

DFXO LVDS - LVPECL & CMOS Output

20 MHz to 300 MHz

Differential Output Crystal Oscillator

DESCRIPTION

Statek's 5 mm x 7 mm surface mount Differential Output Crystal Oscillator is designed for applications requiring low jitter and ultra high frequency differential outputs in a small footprint. Offered at frequencies from 20 MHz to 300 MHz with operation over a temperature range of (-40°C to +105°C). No external decoupling capacitor required with internal capacitor.

FEATURES

- LVDS LVPECL- CMOS outputs available
- Low phase noise Low phase jitter
- Internal 0.01µF SMD decoupling capacitor
- Low Allan deviation
- High Frequency Fundamental Mode Crystal
- Extended Industrial temperature range

APPLICATIONS

Military & Aerospace

- Avionics
- Communications
- Networking

TERMINATIONS

<u>Designation</u>	Termination
SM1	Gold Plated (Pb Free)
SM3	Solder Dipped
SM5	Solder Dipped (Pb Free)

ENABLE/DISABLE OPTIONS (T/N)

Statek offers two enable/disable options: T and N. The T-version has a Tri-State output and continues to oscillate internally when the output is put into the high Z state. As a result, when re-enabled, the oscillator does not have to restart and an output with a stable frequency resumes almost immediately. The N-version does not have PIN 2 connected internally and so has no enable/disable capability. The following table describes the Enable/Disable option T.

ENABLE/DISABLE OPTION T FUNCTION TABLE

	Enable (PIN 1 High*)	Disable (PIN 1 Low)
Output	Frequency Output	High Z State
Oscillator	Oscillates	Oscillates
Current	Normal	Lower than normal

^{*}When PIN 1 is allowed to float, it is held high by an internal pull-up resistor.

DIMENSIONS

PACKAGE DIMENSIONS

Dimension	Minimum	Typical	Maximum
	mm	mm	mm
А	6.86	7.00	7.16
В	4.85	5.00	5.16
C (SM1)	1.55	1.75	1.95
C (SM3/SM5)	1.65	1.85	2.05
D	1.19	1.40	1.41
E	1.07	1.27	1.47

SUGGESTED LAND PATTERN

PIN CONNECTIONS

- 1. (T) Enable/Disable or not connected (N)
- 2. (NC) Not Connected
- 3. Ground
- 4. LVDS LVPECL CMOS
- 5. LVDS LVPECL (complementary)
- 6. Supply Voltage (V_{DD})

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V
DD-0.5 V to 4.6 VStorage Temperature-65°C to +150°CMaximum Process Temperature260°C for 10 secondsESD Protection Human Body Model 2kV

PACKAGING OPTIONS

SPECIFICATIONS TABLE

DFXO - Tray Pack

- Tape and reel Per EIA 481

SPECIFICATIONS

Nominal Frequency Operating Temperature' Supply Voltage²

Shock, survival Vibration, survival⁶ 20 MHz to 300 MHz -40°C to +85°C 3.3V ±10% (2.5 V ±10% Available) 5,000 g, 0.3 ms, ½ sine 20 g, 10-2,000 Hz swept sine

Parameter	Symbol	Units	Tightest	Standard	Maximum	Conditions / Co	omments		
Eroquency Stability ³		PPM	±75	±100	±150	-40°C to +105°C	-40°C to +105°C		
Trequency Stability		PPM	±25	±50	±100	-40°C to +85°C			
Aging		PPM		±5		First year depending on frequency			
Calibration Tolerance ⁴		PPM	±25	±50	±100	@25°C Other toler	ances available		
Frequency Tolerance (Total)		PPM	±25	±50	±100	-40°C to +85°C			
LVDS Output									
Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions / Co	omments		
Output Differential Voltage	V _{OD}	mV	247	355	454				
V _{DD} Magnitude Change	$\Delta V_{ m OD}$	mV	-50		50	$RI = 100 \Omega$			
Output High Voltage	V _{OH}	V		1.4	1.6	(See Figure 2)			
Output Low Voltage	V _{OL}	V	0.9	1.1					
Offset Voltage	V _{OS}	V	1.125	1.2	1.375				
Offset Magnitude Change	$\Delta V_{\rm OS}$	mV	0	3	25				
Power-off Leakage	I _{OXD}	uA		±1	±10	$V_{\rm OUT} = V_{\rm DD}$ or GNE	$V(V_{\rm DD} = 0V)$		
Short Circuit Current (Output)	I _{OSD}	mA		-6	-8				
Rise Time (Differential Clock)	t _R	nS	0.2	0.7	1	$R_L = 100 \Omega$	20% to 80%		
Fall Time (Differential Clock)	t _F	nS	0.2	0.7	1	(See Figures 3 & 4)			
Supply Current (Outputs Loaded)	IDD	mA		30*	80	* Typical for 125 MHz			
Duty Cycle (Output Clock) ⁵		%	40		60	@ 1.25 V	@ 1.25 V		
LVPECL Output									
Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions / Co	omments		
Output High Voltage			V _{DD} -1.025			$R_L = 50 \Omega$ to	o (V _{DD} -2V)		
Output Low Voltage					V _{DD} -1.620	(See Figure 5)			
Rise Time	t _R	nS		0.6	1.5	20% to 80% (See Figure 6)		20% to 80% (See Figure 6)	
Fall Time	t _F	nS		0.5	1.5	20% to 80% (See Figure 6)			
Supply Current (Outputs Loaded)	IDD	mA			100				
Duty Cycle (Output Clock) ⁵		%	40		60	@ V _{DD} -1.3V	@ V _{DD} -1.3V		
CMOS Output									
Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions / Co	omments		
Short Circuit Current		mA		±50					
Output Drive Current	I _{OH}	mA	20	25		$V_{\rm OH} = V_{\rm DD} - 0.4 \text{V}, \ V_{\rm DD} = 3.3 \text{V}$			
(CMOS)	I _{OL}	mA	20	25		V _{OL} =0.4V, V _{DD} =3.3V			
Rise/Fall Time (CMOS)	t _r t _f	nS		1.5		10% to 90% 3.3V, 15pF			
Output Load (CMOS)	CL	рF			15	(See Figure 1)			
Supply Current (Outputs Loaded)	IDD	mA			40	200 MHz Maximum			
Duty Cycle (Output Clock) ⁵	%		40		60	@ 50% V _{DD}			
Timing Jitter									
Jitter (Integrated) (LVDS)		pS		0.3	0.4	125 MHz (12 kHz	to 20 MHz RMS)		
Jitter (Period) (LVDS)		pS		2.0		125 MHz (10,000 cycles RMS)			
Phase Noise - 125 MHz	Offset Fre	equency	@ 10 Hz	@ 100 Hz	@ 1 kHz	@ 10 kHz	@ 100 kHz		
Typical (LVDS)	€(f) dBc/Hz		-85	-110	-133	-143	-148		

Parameters listed are at 25°C unless otherwise noted.

1. -40°C to +105°C at selected frequencies. Please contact factory.

2. 2.5 V available for frequencies up to 160 MHz.

3. Does not include calibration tolerance.

4. Contact factory for tighter tolerance.

5. Contact factory for 45/55% duty cycle.

6. Per MIL-STD-202G, Method 204D, Random vibration testing also available.

STATEK CORPORATION 512 N. MAIN ST., ORANGE, CA 92868 714-639-7810 FAX: 714-997-1256 www.statek.com

LVPECL Transition Time Waveform

t_

OUT

0

Figure 5