CFPT9300

SMD Temperature Compensated Crystal Oscillator (PLUTO)

A series of lead free surface mountable TCXO/TCVCXO for medium to high volume applications where small size (5 x 3.2 mm) and high performance are prerequisites.

Product description

The CFPT9300 uses Rakon's proprietary ASIC 'Pluto™', a single chip oscillator and analogue compensation circuit, capable of sub 0.3ppm performance over an extented temperature range. Its ability to function down to a supply voltage of 2.4V and low power consumption makes it particulary suitable for mobile applications.

Applications

- Communications
- Other

Features

- HCMOS or clipped sinewave output
- Stability ±0.2ppm over -20/70°C or ±0.3ppm over -40/85°C

Specifications

SPECIFICATION REFERENCES 1.0

Line	Parameter	Description
1.1	Model description	CFPT9300
1.2	RoHS compliant	Yes
1.3	Package size	5.0 x 3.2 x 1.7 mm (see model drawing)

2.0 FREQUENCY CHARACTERISTICS (ALL)

Line	Parameter	Test Condition	Value	Unit
2.1	Frequency range	Frequency range available (note 1 & 2)	1.25 to 52	MHz
2.2	Frequency calibration	Initial calibration @ 25°C	±1 max	ppm
2.3	Frequency stability over temperature	Reference to (Fmax + Fmin)/2	±0.2 to 2	ppm
2.4	Temperature range	Operating temperature range over which temperature stability is measured	-40 to 85	°C
2.5	Reflow shift	Measured \geq 60 minutes after reflow	±1 max	ppm
3.0	FREQUENCY CHARACTER	ISTICS (CLIPPED SINEWAVE)		
Line	Parameter	Test Condition	Value	Unit
3.1	Supply voltage stability	±5% variation, reference to frequency at nominal supply voltage, typical	±0.1	ppm
3.2	Load sensitivity	±10% variation, reference to frequency at nominal load, typical	±0.05	ppm

rakon

4.0 FREQUENCY CHARACTERISTICS (HCMOS)

Line	Parameter	Test Condition	Value	Unit
4.1	Supply voltage stability <20MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.1	ppm
4.2	Supply voltage stability 20 - 35MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.3	ppm
4.3	Supply voltage stability 35 - 52MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.5	ppm
4.4	Load sensitivity <20MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.2	ppm
4.5	Load sensitivity 20 - 35MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.3	ppm
4.6	Load sensitivity 35 - 52MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.5	ppm

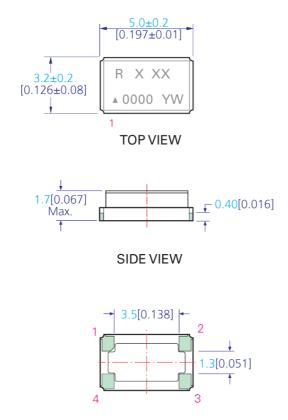
5.0 LONG TERM STABILITY Lin Parameter

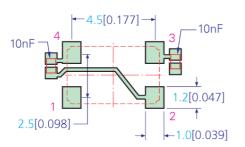
Line	Parameter	Test Condition	Value	Unit
5.1	In first year	≤20MHz	±1 max	ppm
5.2	In first year	>20MHz	±2 max	ppm
5.3	For 10 years	≤20MHz	±3 max	ppm
5.4	For 10 years	>20MHz	±5 max	ppm

6.0	POWER SUPPLY			
Line	Parameter	Test Condition	Value	Unit
6.1	Supply voltage	Nominal supply voltage $(\pm 10\%)$ to be specified as part of model code	2.4 to 6	V
6.2	Current HCMOS	typically: 1+frequency(MHz)*supply(V)*{load(pF)+15}*10-3mA e.g 20MHz, 3.3V, 15pF approximately equals 3mA		
6.3	Current Clipped Sinewave	typically: 1+frequency(MHz)*1.2*{load(pF) +30}*10 ⁻³ mA e.g 20MHz,10pF approximately equals 2mA		

7.0 CONTROL VOLTAGE

Line	Parameter	Test Condition	Value	Unit
7.1	Control voltage range		0.5 to 2.5	V
7.2	Frequency tuning	Frequency ≤20MHz (note 3)	±5 min	ppm
7.3	Frequency tuning	Frequency >20MHz (note 3)	±7 min	ppm
7.4	Frequency tuning	Custom request	±5 to 20	ppm
7.5	Port input impedance	Measured between control voltage and GND pin	100 min	kΩ
7.6	Linearity		2 max	%
7.7	Slope	Positive		
7.8	Modulation bandwidth		2 min	kHz
8.0	OSCILLATOR OUTPUT- (CLIPPED SINEWAVE		
Line	Parameter	Test Condition	Value	Unit
8.1	Output waveform	Clipped sinewave		
8.2	Output voltage level	Peak to peak voltage measured at minimum supply voltage	0.8 min	V
8.3	Output load resistance		10	kΩ
8.4	Output load		10	pF


capacitance


Drawing Name: CFPT9300 Model Drawing

MODEL DRAWING

BOTTOM VIEW

RECOMMENDED PAD LAYOUT - TOP VIEW

NOTE:

1) Pin connections are detailed in the specification.

2) For correct operation a 10nF supply de-coupling capacitor should be placed next to the device, as shown above. If an AC coupled output is required a 10nF should be placed in series with output pad 3.

TITLE: CFPT9300 MODEL OUTLINE DRAWING			Tolerance: - xx =±0.5	
FILENAME: CFPT9300_MD	REVISION:	В	$- XX = \pm 0.5$ $X.X = \pm 0.2$	
RELATED DRAWINGS:	DATE: 2	22-Jul-10	$X.XX = \pm 0.10$	rakon
	SCALE:	5:1	- $X.XXX = \pm 0.05$ - $X^{\circ} = \pm 1.0^{\circ}$	
	Millimeters [inch]		Hole $=\pm 0.10$	©2009 Rakon Limited

