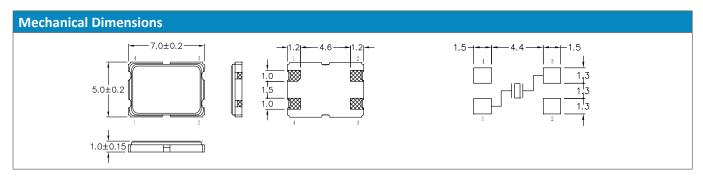


Features

- Low in height, suitable for thin equipment
- Ceramic package and metal lid assures high reliability
- Tight tolerance and stability available

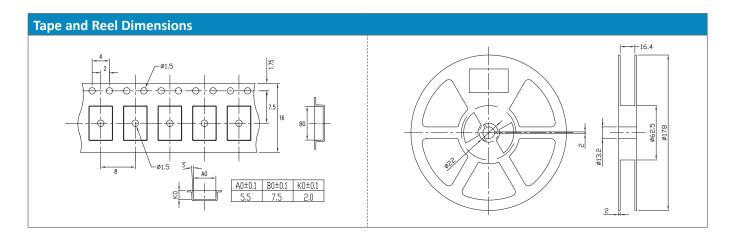
Applications


- High density applications
- Modem, communication and test equipment
- PMCIA, wireless applications
- Automotive applications

General Specifications				
Frequency Range		6.000 to 150.000MHz		
Mode of Oscillation	Fundamental	6.000 to 48.000MHz		
	Third Overtone	40.000 to 150.000MHz		
Frenquency Tolerance at 25°C		±10 to ±30ppm (±30ppm standard)		
Frequency Stability over Temperature Range		See Stability vs. Temperature Table		
Storage Temperature		-55 to +125°C		
Aging per Year		±3ppm max.		
Load Capacitance C _L		10 to 32pF and Series Resonance		
Shunt Capacitance C ₀		7.0pF max.		
Equivalent Series Resistance (ESR)		See ESR Table		
Drive Level		100μW typ.		
Insulation Resistance (MΩ)		500 at 100Vdc ±15Vdc		

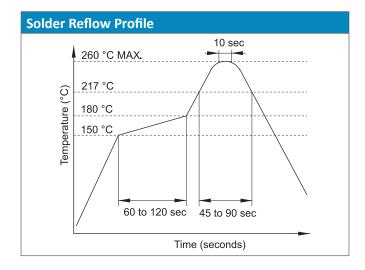
Equivalent Series Resistance (ESR)						
Frequency Range - MHz	Ω max.	Mode of Operation				
6.000 to 10.000	110	Fundamental				
10.100 to 12.000	60					
12.100 to 20.000	45					
20.100 to 48.000	30					
40.000 to 150.000	60	Third Overtone				

custom values available upon request


Frequency Stability vs. Temperature					
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm
-20 to +70°C	0	0	0	0	0
-40 to +85°C	O*	0	•	0	0
-40 to +105°C	-	-	-	0	0
-40 to +125°C	-	-	-	-	0
*Operating Temperature -30 to +85°C				•	standard O available

Part N	Part Numbering Guide								
Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Automotive Indicator	Packaging
QT = Quarz- technik	C7A = 5x7 4-Pad SMD	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C E = -20 - +105°C A = -40 - +125°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	A = AEC-Q200	M = 250pcs Tape&Reel R = 1000pcs Tape&Reel B = Bulk
Example: 0	Example: QTC7A12.0000FBT3I30R bold letters = recommended standard specification					d standard specification			

Marking Code Guide


Contains frequency, Quarztechnik manufacturing code, production code (month and year) and load capacitance.

Month Codes					
January	Α	July	G		
February	В	August	Н		
March	С	September	I		
April	D	October	J		
May	Е	November	K		
June	F	December	L		

Year	Codes				
2010	0	2011	1	2012	2
2013	3	2014	4	2015	5
2016	6	2017	7	2018	8
2019	9	2020	0	2021	1

Load Capacitance Code in pF					
pF	PN Code	pF	PN Code		
12	Α	20	F		
18	В	22	G		
8	С	30	Н		
10	D	32	l I		
16	E	S	S		

Example: First Line: 12.000 (Frequency) Second Line: QA4A (Quarztechnik - January - 2014 - 12 pF)

Environmental Specifications			
Mechanical Shock	MIL-STD-202, Method 213, C		
Vibration	MIL-STD-202, Method 201 & 204		
Thermal Cycle	MIL-STD, Method 1010, B		
Gross Leak	MIL-STD-202, Method 112		
Fine Leak	MIL-STD-202, Method 112		