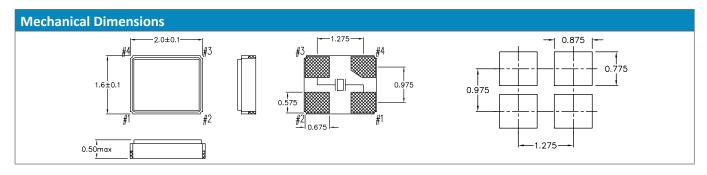


Features

- 2.0 x 1.6 x 0.5mm ultra miniature package
- Seam sealed ceramic package with metal lid assures high precision and reliability

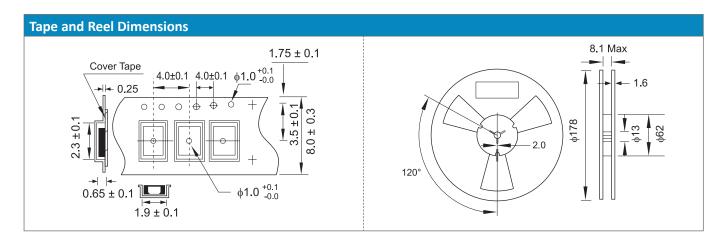
Applications


- High density applications
- Modem, communication and test equipment
- PMCIA, wireless applications
- Automotive applications

General Specifications	
Frequency Range	20.000 to 52.000MHz (Fundamental)
Frenquency Tolerance at 25°C	±10 to ±30ppm (±30ppm standard)
Frequency Stability over Temperature Range	See Stability vs. Temperature Table
Storage Temperature	-40 to +85°C
Aging per Year	±3ppm max.
Load Capacticance C _L	7 to 32pF and Series Resonance
Shunt Capacticance C ₀	7.0pF
Equivalent Series Resistance (ESR)	See ESR Table
Drive Level	50μW max.
Insulation Resistance (MΩ)	500 at 100Vdc ±15Vdc

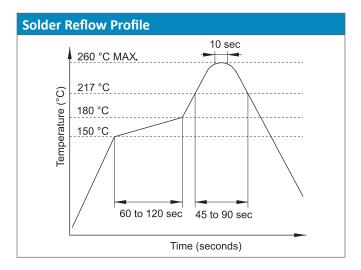
Equivalent Series Resistance (ESR)					
Frequency Range - MHz	Ω max.	Mode of Operation			
20.000 to 40.000	100	Fundamental			
40.100 to 52.000	60				

custom values available upon request


Frequency Stability vs. Temperature					
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm
-20 to +70°C	0	0	0	0	0
-40 to +85°C	-	0	•	0	0
				• :	standard O available

Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Automotive Indicator	Packaging
QT = Quarz- technik	C20 = 1.6x2.0 4-Pad SMD	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	A = AEC-Q200	M = 250pcs Tape&Reel R = 1000pcs Tape&Ree B = Bulk

Marking Code Guide


Contains frequency, Quarztechnik manufacturing code, production code (month and year) and load capacitance.

Month Codes				
January	А	July	G	
February	В	August	Н	
March	С	September	I	
April	D	October	J	
May	Е	November	К	
June	F	December	L	

Year Codes						
2016	6	2017	7	2018	8	
2019	9	2020	0	2021	1	
2022	2	2023	3	2024	4	
2025	5	2026	6	2027	7	

Load C	Load Capacitance Code in pF				
pF	PN Code	pF	PN Code		
12	А	20	F		
18	В	22	G		
8	С	30	Н		
10	D	32	I		
16	E	S	S		

Example: First Line: 12.0 (Frequency) Second Line: QA4A (Quarztechnik - January - 2014 - 12 pF)

Environmental Specifications				
Mechanical Shock	MIL-STD-202, Method 213, C			
Vibration	MIL-STD-202, Method 201 & 204			
Thermal Cycle	MIL-STD, Method 1010, B			
Gross Leak	MIL-STD-202, Method 112			
Fine Leak	MIL-STD-202, Method 112			