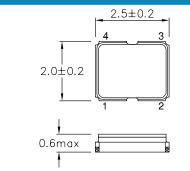
QTC25 Series

Features

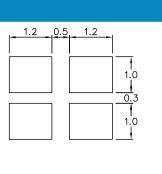
- Low in height, suitable for thin equipment
- Ceramic package and metal lid assures high reliability
- Tight tolerance and stability available

Applications

- High density applications
- Modem, communication and test equipment
- PMCIA, wireless applications
- Automotive applications

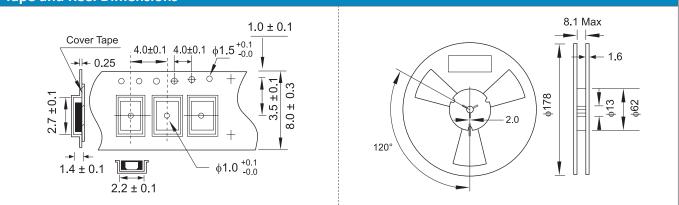

General Specifications							
Frequency Range	16.000 to 50.000MHz (Fundamental)						
Frenquency Tolerance at 25°C	±10 to ±30ppm (±30ppm standard)						
Frequency Stability over Temperature Range	See Stability vs. Temperature Table						
Storage Temperature	-55 to +125°C						
Aging per Year	±3ppm max.						
Load Capacitance C_L	7 to 32pF and Series Resonance						
Shunt Capacitance C ₀	5.0pF max.						
Equivalent Series Resistance (ESR)	See ESR Table						
Drive Level	100μW typ.						
Insulation Resistance (MΩ)	500 at 100Vdc ±15Vdc						


Equivalent Series Resistance (ESR) Frequency Range - MHz Mode of Operation 16.000 to 29.999 150 Fundamental 30.000 to 50.000 100


custom values available upon request

Frequency Stability vs. Temperature									
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm				
-20 to +70°C	0	0	0	0	0				
-40 to +85°C	-	0	•	0	0				
-40 to +105°C	-	-	-	0	0				
-40 to +125°C	-	-	-	-	0				
				•	standard O available				

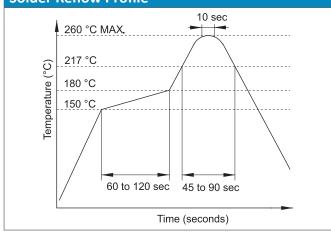
Mechanical Dimensions



Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Automotive Indicator	Packaging
QT = Quarz- technik	C25 = 2x2.5 4-Pad SMD	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C E = -20 - +105°C A = -40 - +125°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	A = AEC-Q200	M = 250pcs Tape&Ree R = 1000pcs Tapeℜ B = Bulk

深圳市泰河电子有限公司 🖂 taiheth@163.com 🙋 0755-27872782 🔗 http://www.smdcrystal.com

Tape and Reel Dimensions


Marking Code Guide

Contains frequency, Quarztechnik manufacturing code, production code (month and year) and load capacitance.

Month	Codes			Year Codes					Load Capacitance Code in pF				
January	А	July	G	2010	0	2011	1	2012	2	pF	PN Code	рF	PN Code
February	В	August	н	2013	3	2014	4	2015	5	12	А	20	F
March	с	September	1	2016	6	2017	7	2018	8	18	В	22	G
April	D	October	J	2019	9	2020	0	2021	1	8	C	30	н
May	E	November	К							10	D	32	I
June	F	December	L							16	E	S	S

Example: First Line: 12.000 (Frequency) Second Line: QA4A (Quarztechnik - January - 2014 - 12 pF)

Solder Reflow Profile

Environmental Specifications							
Mechanical Shock	MIL-STD-202, Method 213, C						
Vibration	MIL-STD-202, Method 201 & 204						
Thermal Cycle	MIL-STD, Method 1010, B						
Gross Leak	MIL-STD-202, Method 112						
Fine Leak	MIL-STD-202, Method 112						