- [技术支持]石英晶振系列解决方案2019年04月29日 15:17
从早期的无线电到雷达,以及现在的数字计算,每个电路都需要一个时钟或心跳来指导其功能。时序控制从低功率到高精度的各种应用中的处理速率,数据连接和RF传输频带。时间已成为一个多元化的工程领域。考虑到可以设计时钟电路的多种方式以及每年引入该行业的许多进步,工程师应该定期重新考虑其时序考虑因素。以下是基本计时设备列表以及使用它们的最佳时间。
1.LC谐振器
LC谐振器是最简单和常用的定时电路,由放大器,电感器和电容器组成。主要优点包括低成本和易于集成,特别是在高频率下。然而,它不是非常准确,并且随温度变化很大。这种可变性提供了一个额外的属性:宽拉范围。因此,在开发小型或高度集成的压控振荡器(VCO)时,LC是首选的谐振器。这些振荡器在PCB或片上设计用于跟踪或锁定其他频率。由于温度可以使频率+/- 10,000 ppm或更高,因此LC不够精确,无法单独运行。
2.陶瓷谐振器
陶瓷谐振器的主要优点是成本。如果您正在寻找最低成本和稳定的解决方案,那么这项技术可以帮助您实现这一目标。不要指望在整个温度范围内稳定性小于+/- 1000ppm。该谐振器成本低,但不能用于精确或甚至部分精确的定时。玩具,低端设备和低端MCU应用程序等通用应用程序可以摆脱这种不精确的程度。如果您需要更高的精度,其他谐振器将帮助您。
3.石英晶体
石英晶体因其自补偿温度稳定性,出色的初始精度和适中的成本而成为时间之王。作为谐振器,它具有高Q值,可实现极低的在线噪声。批量生产已经对这些设备的精度和成本进行了微调,因此价格适中的晶体现在可以实现+/- 20ppm至+/- 50ppm的总体精度。它具有出色的稳定性,是当今许多连接协议的理想时间基础,从Wi-Fi,Zigbee和蓝牙到汽车LIN / CAN,以太网,UART和工业应用。定时MCU和使用石英晶体的处理器提供的精度可以满足常见的连接协议。但是,有些协议需要更高的性能。晶体的精度可以提高。
4.石英晶体振荡器(XO)
石英晶体振荡器集成了振荡器芯片和石英晶体。它提供了石英的准确性和低噪声优势,但降低了电路板走线引起的可变性。在某些情况下,振荡器芯片还将基本石英频率乘以应用所需的频率。在非常低噪声的系统中使用XO而不是裸石英晶体是必要的,例如高速通信,光学互连,光学模块,测试和测量以及先进的RF应用。XO以高频率提供低噪声,这对于使用普通晶体来说是难以实现的。高性能系统中使用的顶级频率如100MHz,156.25MHz或312.5MHz需要使用XO提供的差分LVPECL,LVDS,HCSL或CML信号进行调理。
5.温度补偿晶振(TCXO)
虽然XO提供缓冲和频率转换,但它们跟踪石英晶体毛坯的精度。若干通信和电信应用,例如点对点RF,GNSS / GPS,移动电话,LPWAN网关和其他精密RF连接系统,需要在整个温度范围内具有+/- 0.5ppm至+/- 2.5ppm的频率稳定性。Stratum III需要+/- 0.28ppm的稳定性。裸露的石英不够稳定,不易达到低于10ppm的稳定性。TCXO经历了一个制造流程,可以测量和校准其频率偏差。明显的缺点是成本。请记住,没有什么比终端系统中不可操作的数据链路更昂贵。
6.烤箱控制的晶体振荡器(OCXO)
OCXO可以达到几乎不可想象的精度水平+/- 0.1ppm至0.1ppb或更高的温度。TCXO技术不仅使用温度校准。OCXO通过添加二阶控制 - 石英毛坯的温度来实现稳定性。在启动时,OCXO将石英毛坯加热到比环境温度高约10度,并将温度控制在该水平,从而最大限度地减少温度扰动。在许多情况下,OCXO还具有机械防护冲击和振动功能,使终端系统能够实现最大时钟精度以满足要求。与军用和雷达相关的许多应用以及用于移动电话的基站收发信台(BTS)需要这种精确度。快速移动车辆中的先进高精度GPS也需要高精度。
7.微电子机械系统(MEMS)
MEMS技术与石英并行发展。MEMS基于硅而非石英晶体,具有小型化和抗冲击和振动的优点。由于与MEMS谐振器相关的复杂性,MEMS的主要缺点是成本。虽然它可以用于晶体,XO和TCXO涵盖的各种应用中,但是当需要高耐久性时,MEMS是最佳的。此外,在尺寸为1.6 x 1.2mm的超小尺寸下,MEMS与晶体竞争非常激烈。可穿戴设备,无线充电板,工业控制,机器人,无人机和AR / VR等应用可以充分利用MEMS的耐用性和尺寸。
- 阅读(205)
- [行业新闻]村田新产品MEMS谐振器应用指南2019年04月20日 09:04
日本村田新研发出一款MEMS谐振器,尺寸仅有0.9*0.6*0.3mm。实现了现石英晶体谐振器达不到超小尺寸,并且低ESR特性的产品。MEMS谐振器的诞生可代替许多石英晶体谐振器。有很多人就想问了什么是MEMS谐振器?它跟振荡器有什么区别?MEMS谐振器有哪些特点?工作原理有哪些?使用都需要注意一些什么问题?等等一大串的问题就随之而来了。
那么我们将一一把问题给大家回复。
首先,大家肯定是会对日本村田陶瓷晶振制作所研发出的产品有些疑问,什么是MEMS呢?其实MEMS指的是微机电系统(Micro Mlectro Mechanical Systems),这种装置运用了半导体生产工艺技术,具有三维微细结构。除了面对MEMS谐振器还有一种是振荡器,MEMS振荡器跟其它普通石英晶体振荡器是一样的,将振荡用电路也谐振器融为一体的装置。可用科尔皮兹振荡电路之类的普通振荡电路驱动。
WMRAG32K76CS1C00R0谐振器是村田MEMS技术的代表作品。该产品具有体极柢的ESR特性以及极小尺寸封装,这个是目前石英晶体谐振器无法实现的突破。极小的尺寸有助于减小安装面积,通过优化IC增益,实现了低ESR的MEMS谐振器,降低了功耗。也可用于回流焊接,引线键合和传递模型。WMRAG32K76CS1C00R0谐振器具有晶体该有的特性,32.768KHZ标频以及20PPM标准稳定偏差。可在-30~+85度下正常工作。驱动电平在0.2μW以内。当您考虑置换晶体的时候,要注意晶体谐振器和MEMS谐振器的负载电容量值不同。
并且要知道MEMS谐振器与普通石英晶体谐振器的区别。
- 阅读(237)
- [技术支持]What is frequency at load capacitance?2019年04月16日 10:07
1. Introduction
When ordering crystals for oscillators that are to operate at a frequency f, e.g. 32.768 kHz or 20 MHz, it is usually not sufficient to specify the frequency of operation alone. While the crystals will oscillate at a frequency near their series resonant frequency, the actual frequency of oscillation is usually slightly different from this frequency (being slightly higher in “parallel resonant circuits”).1
So, suppose you have a crystal oscillator circuit and you want to purchase crystals such that when placed in this circuit the oscillation frequency is f. What do you need to tell the crystal manufacturer to accomplish this? Do you need to send a schematic of the oscillator design with all the associated details of its design, e.g. choice of capacitors, resistors, active elements, and strays associated with the layout? Fortunately, the answer is no. In addition to the frequency f, all that is needed is a single number, the load capacitance CL .
2. What is CL ?
Suppose your crystal oscillator operates at the desired frequency f. At that frequency, the crystal has complex impedance Z, and for the purposes of frequency of operation, this is the only property of the crystal that matters. Therefore, to make your oscillator operate at the frequency f, you need crystals that have impedance Z at the frequency f. So, at worst, all you need to specify is a single complex number Z = R+jX. In fact, it is even simpler than this.
While in principal one should specify the crystal resistance R at the frequency f, usually the crystal-to- crystal variation in R and the oscillator’s sensitivity to this variation are sufficiently low that a specification of R is not necessary. This is not to say that the crystal resistance has no effect; it does. We shall discuss this further in Section 4.
So, that leaves a single value to specify: The crystal reactance X at f. So, one could specify a crystal having a reactance of 400 ? at 20 MHz. Instead,however, this is normally done by specifying a capacitance C L and equating.
where we have set ω = 2πf. Physically, at this frequency, the impedance of the series combination of the crystal and a capacitance C L has zero phase (equivalently, has zero reactance or is purely resistive). See Figure 1. To see this, consider
where the second step follows by Equation (1) and the fact that the reactance of a capacitance C is -1/( ωC).
Figure 1—This series combination has zero-phase impedance at a frequency where the crystal has load capacitance CL
So, the task of assuring proper oscillation frequency is the task of providing components (crystals in this case) that, at the specified frequency, have the required reactance, which is stated in terms of a capacitance CL by Equation (1).2 For example, instead of specifying crystals having a reactance of 400 ? at 20 MHz, we specify crystals having a load capacitance of 20 pF at 20 MHz, or more normally, we specify that the crystal frequency be 20 MHz at a load capacitance of 20 pF.
In “parallel resonant circuits,” CL is positive, typically being between 5 pF and 40 pF. In this case the crystal operates in that narrow frequency band between the crystal’s series and parallel resonant frequencies (F s and F p , respectively).
While a truly “series resonant circuit” does not have a load capacitance associated with it [or perhaps an infinite value by Equation (1)], most “series resonant circuits” actually operate slightly off of the series resonant frequency and therefore do have a finite load capacitance (that can be positive or negative).However, if this offset is small and specifying a load capacitance is not desired, it can either be ignored or handled by a slight offset in the specified frequency f.
As we shall see in Section 4, both the oscillator and the crystal determine C L . However, the crystal’s role is rather weak in that in the limit of zero resistance,the crystal plays no role at all in determining C L . In this limiting case, it makes sense to refer to C L as the oscillator load capacitance as it is determined entirely by the oscillator. However, when it comes time to order crystals, one specifies crystals having frequency f at a load capacitance C L , i.e. it is a condition on the crystal’s frequency. Because of this,it would be reasonable to refer to C L as the crystal load capacitance. For the sake of argument, we simply avoid the issue and use the term loadcapacitance.
注释:1> When ordering crystals for series resonant operation,instead of specifying a value for C L , be sure to state that the frequency f refers to the series-resonant frequency, F s .
2> This is not to say that all aspects of frequency determination are tied to this single number. For example,other aspects of the crystal and oscillator determine whether the correct mode of oscillation is selected and the system’s frequency stability (short and long term).
3. Defining F L at C L
We now take Equation (1) as our defining relation for what we mean by a crystal having a given frequency at a given load capacitance.
Definition: A crystal has frequency F L at a load capacitance C L when the reactance X of the crystal at frequency F L is given by Equation (1), where now ω = 2πF L .
Recall that, around a given mode, the reactance of a crystal increases from negative values, through zero at series resonance, to large positive values near parallel resonance where it rapidly decreases to large negative values, and then again it increases towards zero. (See Reference [1].) By excluding a region around parallel resonance, we have a single frequency for each value of reactance. In this way,we can associate a frequency F L given a value of C L .So, positive values of C L correspond to a frequency between series and parallel resonance. Large negative values of C L , correspond to a frequency below series resonance while smaller negative values correspond to frequencies above parallel resonance.(See Equation (3) below.)
3.1. The crystal frequency equation So, how much does the frequency of oscillation depend on the load capacitance C L ? We can answer this question by determining how the crystal frequency F L depends on the crystal load capacitance CL . One can show that to a very good approximation that
where C 1 and C 0 are the motional and static capacitances of the crystal, respectively. (See Reference [1] for a derivation and discussion of this relation.) For the purposes of this note, we shall refer to Equation (3) as the crystal frequency equation.
This shows the dependence of a crystal oscillator’s operational frequency on its load capacitance and its dependence on the crystal itself. In particular, the fractional frequency change when changing the load capacitance from C L1 to C L2 is given to good approximation by
3.2. Trim sensitivity
Equation (3) gives the dependence of operating frequency F L on the load capacitance C L . The negative fractional rate of change of the frequency with C L is known as the trim sensitivity, TS. Using Equation (3), this is approximately
From this we see that the crystal is more sensitive to given change in C L at lower values of C L .
4. But what determines C L ?
Consider the simple Pierce oscillator consisting of a crystal, an amplifier, and gate and drain capacitors as shown in Figure 2.
There are at least three stray capacitances that must be considered in trying to calculate the load capacitance of the Pierce oscillator circuit.
1. An added capacitance from the input of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C G , we can simply absorb this into our definition of C G . (That is C G is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
2. An added capacitance from the output of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C D , we can simply absorb this into our definition of C D . (That is C D is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
3. A stray capacitance C s shunting the crystal as shown in Figure 2.
Redefining C G and C D as discussed above, it then follows [2] that one of the conditions for oscillation is
Where
is the impedance of the parallel combination of the crystal and the capacitance C s and R o is the output resistance of the amplifier.
It can be shown that the crystal resistance R as a function of load capacitance C L is given approximately by (provided C L is not too small)
where R 1 is the motional resistance of the crystal [1].It then follows that (provided C L – C s is not too small)
And
With these results, Equation (6) gives the following equation for C L
where R ′ is approximated by Equation (9). Note that the equation for C L is actually a bit more complicated than it might seem at first as R ′ depends upon on C L.It can be seen that C L decreases as R 1 increases, and so by Equation (3), the frequency of operation increases with crystal resistance. So, the load capacitance does have a dependence on the crystal itself. But as we have mentioned previously, the variation in crystal resistance and resulting sensitivity to this variation is usually sufficiently low that the dependence can be ignored. (In this case, a nominal value for crystal resistance is used in calculating C L .)
However, sometimes the resistance effect cannot be ignored. Two crystals tuned so that both have exactly the same frequency at a given load capacitance C L can oscillate at different frequencies in the same oscillator if their resistances differ. This slight difference leads to an increase in the observed system frequency variation above that due to crystal frequency calibration errors and the board-to-board component variation.
Note that in the case of zero crystal resistance (or at least negligible compared to the output resistance Ro of the amplifier), Equation (11) gives
So, in this case, the load capacitance is the stray capacitance shunting the crystal plus the series capacitance of the two capacitances on each side of the crystal to ground.
5. Measuring CL
While in principal one could calculate C L from the circuit design, an easier method is simply to measure C L . This is also more reliable since it does not rely on the oscillator circuit model, takes into account the strays associated the layout (which can be difficult to estimate), and it takes into account the effect of crystal resistance. Here are two methods for measuring C L .
5.1 Method 1
This method requires an impedance analyzer, but does not require knowledge of the crystal parameters and is independent of the crystal model.
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency andresistance.
2. Place this crystal in the oscillator and measurethe frequency of operation F L . In placing the crystal into the circuit, be careful not to damage it or do anything to cause undue frequency shifts.(If soldered in place, allow it to cool down to room temperature.) A good technique that avoids soldering is simply to press the crystal onto the board’s solder pads using, for example,the eraser end of a pencil and observe the oscillation frequency. Just be careful that the crystal makes full contact with the board. The system can still oscillate at a somewhat higher frequency without the crystal making full contact with the board.
3. Using an impedance analyzer, measure the reactance X of the crystal at the frequency F L determined in Step 2.
4. Calculate C L using Equation (1) and the measured values for F L ( ω = 2πF L ) and X at F L .
5.2 Method 2
This method is dependent upon the four-parameter crystal model and requires knowledge of these parameters (through your own measurement or as provided by the crystal manufacturer).
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency and resistance.
2. Characterize this crystal. In particular measure its series frequency Fs , motional capacitance C1,and static capacitance C0.
3. Place this crystal in the oscillator and measure the frequency of operation F L (as in Method 1,Step 2.)
4. Calculate C L using Equation (3) and the measured values for F L , F s , C 1 , and C 0 .
It is recommended that either procedure be followed with at least 3 crystals. When done properly, this technique often gives values for C L that are consistent to about 0.1 pF. Further confidence in the final results can be found by repeating the procedure for a number of boards to estimate the board-to-board variation of C L .
Note that in the above, F L does not have to be precisely the desired oscillation frequency f. That is, the calculated value for C L is not a strong function of the oscillation frequency since normally only the crystal is strongly frequency dependent. If, for some reason, the oscillator does have strong frequency dependent elements, then using this procedure would be quite difficult.
6. Do I really need to specify a value for CL ?
There are at least three cases where a specification of C L is not necessary:
1. You intend to operate the crystals at their series-resonant frequency.
2. You can tolerate large errors in frequency (on theorder of 0.1% or more).
3. The load capacitance of your circuit is sufficiently near the standard value (see crystal data sheet) that the frequency difference is tolerable. This difference can be calculated with Equation (4).
If your application does not meet one of the three conditions above, you should strongly consider estimating the load capacitance of your oscillator and use this value in specifying your crystals.
- 阅读(220)
- [行业新闻]FOX crystal型号表2019年03月12日 09:34
FOX CRYSTAL晶振公司成立于1979年,美国福克斯晶振电子有限公司总部位于美国的佛罗里达州的迈尔斯堡。福克斯电子公司的成立使得该公司成为美国领先的高精度,高可靠性的频率元器件制造供应商。按当时的情况来看,FOX晶振公司还是处于一个小型的家族式石英晶体和振荡器的供应商。
美国FOX晶振公司在过去的32年中持续增长,其中一个重要因素离不开其研发部门。福克斯晶振的工程师开发出了几百种产品,而且这些产品为晶体和振荡器的性能,精度以及可靠性带来了认可的新标准。并可以不断的增长业务的需求,缩短了交付晶体的周期。
FOX CRYSTAL Crystal Company was founded in 1979, and Fox Crystal Electronics Co., Ltd. is headquartered in Fort Myers, Florida, USA. The establishment of Fox Electronics has made the company a leading supplier of high-precision, high-reliability frequency components in the United States. According to the situation at the time, FOX Crystal is still a supplier of small family quartz crystals and oscillators.
The US FOX Crystal Company has continued to grow over the past 32 years, and one of the important factors is inseparable from its R&D department. Engineers at Fox Crystal have developed hundreds of products that bring new standards of acceptance for the performance, accuracy and reliability of crystals and oscillators. And can continue to grow business needs, shortening the cycle of delivering crystals.
- 阅读(288)
- [公司新闻]HOSONIC CRYSTAL选型数据表2019年03月11日 09:05
关于HOSONIC鸿星晶振公司可能挺多人也知道,HOSONIC CRYSTAL鸿星晶振股份有限公司成立于1979年在台湾设立登记成立公司,登记的资本为新台币200万元。公司成立之后便于台湾投入石英晶体研发制造.1994年新增资本3400万元,开始大力研发生产石英晶体振荡器,石英晶振,贴片晶振,压控振荡器的研发生产。
About HOSONIC CRYSTAL Company may know that HOSONIC CRYSTAL was established in 1979 to establish a registered company in Taiwan with a registered capital of NT$2 million. After the establishment of the company, it is convenient for Taiwan to invest in the research and development of quartz crystal. In 1994, the company added 34 million yuan of capital, and began to vigorously research and develop the production and production of quartz crystal oscillator, quartz crystal oscillator, patch crystal oscillator and voltage controlled oscillator.
- 阅读(382)
- [行业新闻]NSK Ceramic Resonator2019年03月07日 10:27
台湾NSK晶振公司不仅生产石英晶振,石英晶体谐振器,晶体振荡器,温补晶振,压控晶体,还生产陶瓷谐振器(Ceramic Resonator),陶瓷滤波器(Ceramic Filter),ZTA陶瓷晶振,ZTT陶瓷晶振,3.58M,6M,4M,8M,16M,24M,27M频率均有现货供应.ZTA晶振可从低频1M到50MHZ,主要应用于电视遥控器,风扇遥控器,USB,鼠标等产品.
NRA ZTA/ MG, MT, MX DIP 1.8 MHz to 50.0 MHz 10.0*5.0*10.0 NRE ZTTCV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2 NRE ZTTCS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6 NRE ZTTCC MG SMD 2 to 6.99 MHz 7.4*3.4*1.8 NRD ZTACV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2 NRD ZTACS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6 NRD ZTACC MG SMD 2.0 to 6.99 MHz 7.4*3.4*1.8 NRT ZTT/ MG, MT, MX DIP 1.8 MHz to 50 MHz 10.0*5.0*10.0 NSK Ceramic Filter
陶瓷滤波器LT4.5MB,LT5.5MB,LT6.5MB可以免提提供样品测试,陶瓷滤波器主要应用于TV/VCR产品等.L10.7M陶瓷滤波器均可在线供应.
NRF LT4.5MB DIP 4.43MHz to 6.5MHz 5*3.2 NRF LTCA/CV SMD 10.7MHz 6.9*2.9*1.5 NRF JT4.5MD DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0 NRF JT4.5MC DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0 NRF JT10.7M SMD 10.7MHz 9.0*5.0*7.0 Taiwan NSK Crystal Co., Ltd. not only produces quartz crystal oscillator, quartz crystal resonator, crystal oscillator, temperature-compensated crystal oscillator, voltage-controlled crystal, but also ceramic resonator (Ceramic Resonator), ceramic filter (Ceramic Filter), ZTA ceramic crystal, ZTT ceramic. Crystal oscillator, 3.58M, 6M, 4M, 8M, 16M, 24M, 27M frequency are available from stock. ZTA crystal oscillator can be used from low frequency 1M to 50MHZ, mainly used in TV remote control, fan remote control, USB, mouse and other products.
- 阅读(196)
- [行业新闻]NSK OSCILLATOR数据表2019年03月06日 10:04
- 台湾NSK津绽晶振公司成立于1996年的9月份。成立之后的NSK晶振公司将全部精力投入到石英晶体振荡器,陶瓷滤波器,石英晶体,TCXO振荡器,差分晶振等产品的生产中。NADD 75晶振属于石英晶体振荡器中的一种,也是振荡器里的“贵族”。是差分晶体系列的一员。LVDS输出范围,频率也可以从77.76MHZ到622.08MHZ的高频中。大气化的尺寸7*5*1.9mm可放在任意高端产品中,NADD 75晶振在任何电路板中都显得格外的高端。
NAOD 75 CMOS 1.0 to 125.0 MHz 7*5*1.6 NAOH 53 CMOS 1.0 to 125.0 MHz 5*3.2*1.3 NAOK 32 CMOS 2.0 to 54.0 MHz 3.2*2.5*1.2 NAOL 22 CMOS 2.0 to 50 MHz 2*2.5*0.95 NADD 75
LVDS 77.76 MHz ~ 622.08 MHz 7*5*1.9 NAPD 75
LVPECL 75 MHz ~ 622.08 MHz 7*5*1.9 NAVD-6 CMOS 1.0 MHz to 52.0 MHz 7*5*1.8 NAVH-6 CMOS 12MHz ~ 35.328MHz 5*3.2*1.5 NAOD 75 CMOS 32.768 KHz 7*5*1.6 NAOH 53 CMOS 32.768 KHz 5*3.2*1.5 NAOK 32 CMOS 32.768 KHz 3.2*2.5*1.2 NAON 21
CMOS 2.0 to 50 MHz 2.05*1.65*0.75 - 阅读(188)
- [行业新闻]TXC温补振荡器及VCXO振荡器系列选型手册2019年03月04日 14:38
TXC晶振有分好多種類型,溫補晶體振蕩器,壓控振蕩器,恒溫晶體振蕩器OCXO振蕩器.以下泰河電子為大家整理提供已分好類別的TXC溫補振蕩器及VCXO振蕩器選型表,以供大家選型參考使用.雖然TXC晶振的型號眾多,但是並不會難記.
TXC压控振荡器VCXO系列 - 差分晶振
一般来说单相输出称之为晶体振荡器,并以正弦波或者CMOS波型(矩型波)输出为主要代表.
剪切的正弦波输出具有类似圆角矩形的波形,并常用于RF电路,因为它抑制了不必要的谐波.TCXO(温度补偿晶体振荡器)被称为削波正弦波输出的产物.由于CMOS波输出是对应于数字信号处理的逻辑电子的信号输出,所以有利于数字信号的传送,并用于时钟,如CPU等.
Model Frequency Stability
(-40~85ºC)Voltage Output Oscillation Dimensions BJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 7 x 5 x 1.3mm BK 60 ~ 700MHz ±50ppm 3.3V LVPECL PLL 7 x 5 x 1.3mm BN 60 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 7 x 5 x 1.3mm BP 60 ~ 700MHz ±50ppm 3.3V LVDS PLL 7 x 5 x 1.3mm CJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 5 x 3.2 x 1.2mm CN 50 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 5 x 3.2 x 1.2mm TXC温补振荡器TCXO系列 - Basic
什么是温补晶振。来自温度传感器的输出信号用于通过补偿网络产生校正电压。 校正电压施加到VCXO中的变容二极管。 电容变化可以补偿晶体的频率与温度特性.
Model Frequency Stability
(-30~85ºC)Operating Temp Voltage Output Dimensions 7Q 13 ~ 52MHz ±2ppm -40~+85ºC 2.4V-3.3V Clipped
Sinewave3.2 x 2.5 x 1mm 7L 13 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.5 x 2 x 0.8mm 7Z 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.0 x 1.6 x 0.8mm 8P 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave1.6 x 1.2 x 0.6mm TXC温补振荡器TCXO系列 - 高精度振荡器 Model Frequency Stability
(-40~85ºC)Voltage Output Dimensions 7N 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS7 x 5 x 2mm 7P 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS5 x 3.2 x 1.2mm TXC恒温晶体振荡器OCXO系列 - CMOS Model Frequency Stability Voltage Output Dimensions OC 10 ~ 25MHz ±5ppb
(0~70ºC)5, 12V CMOS 36 x 27mm OB 10 ~ 25MHz ±10ppb
(0~75ºC)3.3, 5V CMOS 25 x 25mm OA 10 ~ 40MHz ±200ppb
(-30~70ºC)3.3, 5V CMOS 20 x 20mm - 阅读(251)
- [行业新闻]中国人正确过2月14日的方式2019年02月14日 09:43
今天2019年2月14日是一年一度大家口中所谓的”情人节”,也可以说是”情人劫”吼.从字面的意思上来讲并不是情侣夫妻之间的节日,而是情人过的节.所以,大家还是那么高兴又那么期待的要过情人节吗?
其实说起这个情人节的来源,真的,它并非是我们中国的节日,而是西方国家的传统节日之一.情人节又叫圣瓦伦丁节或者圣华伦泰节.(好长的名字,读起来又贼拗口).起源于基督教.原本的意思是男女间相互送花,巧克力,贺卡以及表达爱意或者友好的日子.晚餐约会通常代表了情侣关系的发展关键.然后各国的商家借此商机做活动,再慢慢的也成为了各国青年人喜爱的日子.情人节便开始流行起来.
但,我们不能在每天都过着安稳日子的时候忘记了那些革命的艰辛.我们应该多去了解一些历史.比如说国内,都出现了一些什么大事情.
1912年2月14日 孙中山辞去临时大总统一职
106年前,1912年2月14日(辛亥年腊月廿七),孙中山辞去临时大总统一职。
♦ 1935年2月14日 蒋介石在庐山答日本《朝日新闻》记者
83年前,1935年2月14日,蒋介石在庐山答日本《朝日新闻》记者问时称:“中日两国不仅在东亚大局上看来有提携之必要,即为世界大局设想,亦非提携不可。”“中国不但无排日之行动思想,亦无排日之必要。”
♦ 1949年2月14日 李宗仁派和平使团与中共谈判
69年前,1949年2月14日,上海“和平使者团”颜惠庆、邵力子、章士钊等16人受李宗仁之托,以私人资格乘飞机到达北平,与中共方面商谈国事。
♦ 1949年2月14日 美国谋求台湾独立失败
69年前,1949年2月14日,美驻华参赞莫成德自南京秘密飞往台北,游说台湾省主席陈诚“自立”。陈诚不从。美方又想以孙立人替陈诚。孙毕业于美国弗吉尼亚军事学院,是国民党军队中留美出身的唯一高级将领,时任台湾防卫司令,但孙对蒋亦无二心。美拉孙计划一厢情愿。
♦ 1950年2月14日 《中苏友好同盟互助条约》在莫斯科签订
68年前,1950年2月14日,经过毛泽东、周恩来同斯大林、维辛斯基会谈,两国政府在莫斯科签订《中苏友好同盟互助条约》,同年4月11日起生效,有效期30年。双方还签订《中苏关于中国长春铁路、旅顺口及大连的协定》、《中苏关于贷款给中华人民共和国的协定》。
♦ 1958年2月14日 周恩来出访朝鲜,中国政府决定撤军。
60年前,1958年2月14日,周恩来率我国政府代表团访问朝鲜,协商撤军一事。
♦ 1963年2月14日 中央美术展览馆建成
55年前,1963年2月14日,中央美术展览馆(中国美术馆)由毛泽东主席题写“中国美术馆”馆额并正式开放,是新中国成立以后的国家文化标志性建筑。主体大楼为仿古阁楼式,黄色琉璃瓦大屋顶,四周廊榭围绕,具有鲜明的民族建筑风格。主楼建筑面积18000多平方米 ,一至五层楼共有17个展览厅,展览总面积8300平方米;1995年新建现代化藏品库,面积4100平方米。
♦ 1972年2月14日 我国与墨西哥建立外交关系
46年前,1972年2月14日,墨西哥同中国建交。建交后,两国关系发展顺利。墨历任总统均在任内访华,中国**主席、政府总理等领导人先后访墨。
♦ 1981年2月14日 邓小平为英国培格曼出版公司编辑出版的《邓小平副主席文集》作序
37年前,1981年2月14日,由英国培格曼出版公司编辑出版的这本文集,收集了邓小平1956年到1979年的部分讲话,内容涉及政治、科学、教育、文艺等几个方面。从50年代中期到70年代末,世界历史在错综复杂的矛盾和激烈的动荡中发展,社会主义中国和中国共产党也走过了自己的很不寻常的道路。
♦ 1983年2月14日 中共中央发出《关于加强党员教育工作的通知》
35年前,1983年2月14日,中共中央发出《关于加强党员教育工作的通知》。《通知》指出:认真学习党的十二大制定的社会主义现代化建设的纲领和大会通过的新党章,是今后一个时期党员教育的主要内容,是提高党员素质、提高党组织战斗力和实现党风根本好转的重要一环,是全党的一件大事。抓好这件大事,要党委负责,全党动手。
♦ 1986年2月14日 国家自然科学基金委员会成立。
32年前,国务院于1986年2月14日批准成立国家自然科学基金委员会,作为管理国家自然科学基金的国务院直属事业单位,自然科学基金委根据国家发展科学技术的方针、政策和规划,有效运用国家自然科学基金,支持基础研究,坚持自由探索,发挥导向作用,发现和培养科学技术人才,促进科学技.
然后国外的2月14日这天,也发生了很多大事件.最令大家关注的可能会是情人节的由来.其实,这个节日说好听点就是为了祭奠瓦伦丁.说难听点就是...后面大伙自个补充,我怕被群殴…其实这个版本也有很多,大家想了解更多一点可以去找一下相关资料.
♦ 公元270年2月14日 为纪念瓦伦丁为爱牺牲,2月14日被定为情人节
1748年前,公元270年2月14日,罗马圣教徒瓦伦丁被处死,基督教徒为了纪念瓦伦丁为纯洁的爱而牺牲自己,将临刑的这一天定为“圣瓦伦节”,此日被后人定为“情人节”
♦ 1076年2月14日 罗马皇帝亨利四世被教皇驱逐出天主教,政教冲突爆发
942年前,1076年2月14日,神圣罗马皇帝亨利四世(Heinrich IV)被罗马教皇格列高利七世。按照天主教廷规定,被处罚者如不能在一年之内获得教皇的宽恕,他的臣民都要对他的解除效忠宣誓。德意志大部分诸侯表示,如果亨利四世不能在一年之内恢复教籍,他们就不再承认他的合法性。亨利四世没有足够的兵力来制服反叛的诸侯,他不得不向格列高利七世低头。
♦ 1859年2月14日 美国合并俄勒冈州
159年前,1830年以后,成千上万的美国人从中西部迁移到西北部太平洋沿岸。在他们走过的俄勒冈小道上,至今仍可见当年篷车压出的车辙。1848年建立俄勒冈地区。1859年2月14日加入联邦,为美国第33州。
♦ 1876年2月14日 贝尔向美国专利局递交了电话发明专利申请书
142年前,1876年2月14日,贝尔申请了那个著名的他和沃森一直研究着的装置——电话的专利。同一天另一个发明家格雷(1835-1901)也向美国专利局递交了相似设备的专利申请书,只因比贝尔晚了几个小时而痛失电话发明权。贝尔获得电话的专利证书。
♦ 1879年2月14日 智利同玻利维亚、秘鲁两国爆发南美太平洋战争
139年前,1879年2月14日(己卯年正月廿四),智利同玻利维亚、秘鲁两国爆发争夺南太平洋沿岸阿塔卡马荒漠硝石产地的战争。
♦ 1946年2月14日 世界上第一台计算机诞生
72年前,1946年2月14日,由美国军方定制的世界上第一台电子计算机“电子数字积分计算机”(ENIACElectronicNumericalAndCalculator)在美国宾夕法尼亚大学问世了。
♦ 1956年2月14日 苏共二十大上赫鲁晓夫作反斯大林的秘密报告
62年前,1956年2月14日,赫鲁晓夫上台后召开党的二十次代表大会,会议期间,赫鲁晓夫作了反斯大林的秘密报告。
♦ 1958年2月14日 约旦--伊拉克成立阿拉伯联邦
60年前,1958年2月1日,埃及和叙利亚成立阿拉伯联合共和国。约旦、伊拉克认为新成立的阿联对它们具有潜在的威胁而必须组成新联邦。1958年2月14日伊拉克国王费萨尔,约旦国王侯赛因在安曼宣布两国并为一个“阿拉伯联邦”,即“伊约联邦”。
♦ 1967年2月14日 拉美21国签署《拉丁美洲禁止核武器条约》
51年前,《拉丁美洲禁止核武器条约》亦称《特拉特洛尔科条约》。墨西哥、智利等14个拉丁美洲国家于1967年2月14日在墨西哥城的特拉特洛尔科区签订,无限期有效。
♦ 1983年2月14日 印度发生阿萨姆邦屠杀事件
35年前,1983年2月14日,正当印度阿萨姆邦全力以赴进行邦议会选举时,社区间的暴力活动席卷了这个邦,造成几千人死亡。
♦ 1989年2月14日 霍梅尼宣布判处英国作家拉什迪死刑
29年前, 英国作家萨曼·拉什迪因出版一本名为《撒旦诗篇》的小说,遭到了穆斯林世界的强烈反对。1989年2月14日,伊朗宗教领袖霍梅尼宣布判处拉什迪死刑,并悬赏数百万美元追杀他。由此引起了一场国际风波。
♦ 1992年2月14日 联合国宣布1991年世界经济出现战后首次负增长
26年前,1992年2月14日,联合国宣布1991年世界经济出现战后首次负增长
还有很多很多的事迹没有写完,如果大大小小写在一起的话,估计几本书还不够出呢.上面这些都还是一些精选的国内外大事件来的.并且还是没有说完.看完,是不是发现有很多事迹都没看过,也没有了解过.说实话我也是.因为咋天无意之间刷到一条抖音讲的是2月14日国内所发生的大事件,所以才会有想去查阅资料的冲动.情侣间只要关系好,每天都是情人节,也不会在意多这么一天.而现在的人儿除了吃饭睡觉打豆豆玩手机电脑游戏,很少人去看些新闻,了解一些历史.做为晶振销售人员一周只有一天休息,所以我会选择在家睡觉睡到自然醒,但很少能够满足.因为我们石英晶振的业务手机都会24小时开机为客户服务.不敢关机也不敢调无声,因为怕客户找不上我们会着急.如果可以的话,我也还是会想去多了解一些历史的.毕竟读书的时候历史成绩一直都不太理想…
- 阅读(377)
- [技术支持]低相位噪声低成本定时解决方案2019年01月07日 09:47
当前最先进的通信电路,例如:
•μWave频率上变频器
•点对点μWave回程
•卫星调制解调器
•高端网络
•测试和测量设备
都有一个共同点;极低的相位噪声频率参考.从历史上看,为了达到这种水平的相位噪声,振荡器制造商依靠SC-Cut晶振或第5或第7泛音AT-Cut晶体作为参考振荡器解决方案.
前者产生的OCXO体积庞大,功耗过大而且相当昂贵.后者实施起来很复杂,频率提供有限,并且抑制了系统自动校正老化和温度漂移的能力.
解决成本,尺寸,功率,频率稳定性和长期老化校正的综合挑战;Abracon开发了ABLNO系列VCXO晶振,具有出色的相位噪声特性,采用9x14mm封装.
提供50.0MHz和156.25MHz之间的十五个标准频率;这些器件为设计人员提供了全面的参考时序选择.此外,如果系统要求不能使用电压可控振荡器,ABLNO系列可提供固定时钟配置.
图(1)示出了50MHz载波处的典型相位噪声,而图(2)和(3)分别表示100MHz和156.25MHz载波处的典型相位噪声.表(1)总结了在这些载波上配置为VCXO振荡器的ABLNO系列的典型相位噪声性能,而表(2)表示绝对最差情况下的相位噪声特性.
表格1)
典型的相位噪声性能
表(2)
最差情况保证相位噪声性能
ABLNO系列采用经过特殊处理的第3版Overtone,AT-Strip石英晶体设计,采用各种处理技术进行优化,可在温度范围内提供极高的无负载“Q”和频率稳定性.这些晶体和振荡器电路的组合设计具有同类最佳的相位噪声作为主要目标;在载波的12kHz至20MHz的最佳带宽范围内产生了极低的均方根抖动.
表3)
ABLNO系列rms抖动
为了确保出色的相位噪声性能,ABLNO系列不仅满足上述设计的性能参数,而且Abracon还对100%的产品进行了相位噪声和均方根抖动兼容性的室温测试.
如前所述,Abracon已经制定了专有的Quartz-Blank处理技术,以显着降低这些器件的频率与温度误差.通常,相对于25ºC下的测量频率,ABLNO系列器件的误差小于±12ppm(最大值为±18ppm).在-40ºC至+85ºC的工作温度范围内可确保稳定性,如下图(4)所示.
此外,这些器件在10年的产品寿命期间保证比±7ppm的老化更好.为了在此期间实现频率校正能力,VCXO配置中保证了±28ppm的最小频率牵引能力,见图(5).
- 阅读(108)
- [技术支持]TCXO温度补偿振荡器如何实现功能2018年12月24日 14:16
当需要标准XO(晶体振荡器)或VCXO(压控晶体振荡器)无法达到的温度稳定性时,TCXO是必需的.
温度稳定性是振荡器频率随温度变化的量度,并且以两种方式定义.一种常见的方法是使用“加/减”规格(例如:±0.28ppm对比工作温度范围,参考25°C-温度范围通常为-40至85°C或-20至70°C).该规范告诉我们,如果我们将25°C的频率设为标称频率,则器件频率将偏离或低于该标称频率不超过0.28ppm.这与指定温度稳定性的第二种方式不同,即使用峰峰值或仅使用没有参考点的正/负值.在第二种情况下,我们不能说我们知道频率会高于或低于频率将会发生多大变化-只是我们知道总的范围是多少.通常,使用来自定义的参考点的正负值来指定设备.
TCXO晶振对工程师非常有用,因为它们可以在比电路板上具有相同功耗和占用空间的标准VCXO更好的温度稳定性的10倍到40倍之间使用.TCXO弥合了标准XO或VCXO与OCXO之间的差距,这些差距更高,需要更多功率才能运行.推动技术的目标是降低功耗,当然还要降低成本,因此TCXO为功耗和成本敏感的应用提供了良好的中端解决方案.
Figure1.TheTemperatureStabilityrangesofvariousoscillatortypes
图1是不同振荡器类型的典型温度稳定性的示意图,范围从标准VCXO的50ppm到高性能OCXO的0.2ppb.轴反转使得曲线在增加温度稳定性的方向上增长.TCXO稳定性范围涵盖VCXO和OCXO之间的中间位置(在某些情况下,重叠某些OCXO性能).
TCXO晶振温度稳定性水平(从5ppm到50ppb)通常是必要的,因为振荡器将独立工作,无论是在没有外部频率参考的系统中的自由运行模式,还是作为固定频率参考TCXO在开环中工作的合成器,用于驱动DDS(直接数字合成),而DDS而不是TCXO被“锁定”到外部参考.
后一种情况(TCXO是开环,频率在DDS设置)正变得越来越普遍,因为设计人员发现使用DDS解决方案可以通过使用数模转换器控制TCXO来实现更好的频率分辨率.由于转向是在DDS而不是振荡器中完成的,因此设计人员需要能够对固定基准的频率如何随温度变化做出某些假设,以便他们可以相应地规划锁相环的设计.由于灵活性,它们允许TCXO用于许多频率控制应用,但一个重要领域是小型蜂窝基站(毫微微,微型和微微),通常它们被用作定时分配芯片的固定频率源.
TCXO温度补偿晶振如何运作
在非常基本的术语中,TCXO通过采用温度补偿网络来操作,该网络感测环境温度并将晶体拉至其标称值.基本振荡器电路和输出级与VCXO中的预期相同.
图2是简化的TCXO功能框图.
图2.TCXO功能块
这个想法是补偿网络驱动牵引网络,然后调整振荡器的频率.
图3是发生了什么的概述-未补偿的晶振频率响应温度(红色)就像一个三阶多项式曲线(如果你采用振荡器非线性效果,更像是第五个),所以目标是补偿网络是为了抵消温度对晶体的影响而产生的电压是有效的关于晶体曲线温度轴的镜像.补偿电压显示为蓝色,得到的频率/温度曲线以绿色显示.
图3.温度补偿
实现这一目标的方法随着时间而改变.使用的第一种方法之一是直接补偿技术,其中使用热敏电阻,电容器和电阻器网络来直接控制振荡器的频率.温度的变化导致热敏电阻(图4中的RT1和RT2)发生变化,这会导致网络的等效串联电容发生变化-这反过来会改变晶体上的电容负载,从而导致频率的变化.振荡器.
图4.直接补偿
在随后的开发中(图5中所示的间接补偿),热敏电阻(RT1至RT3)和电阻(R1至R3)的网络用于产生与温度相关的电压.对网络的输出电压进行滤波,然后用于驱动变容二极管,该变容二极管改变晶振上的负载,再次导致频率变化.
图5间接补偿
目前的方法将补偿网络和拉网络集成到一个集成电路中(如图6所示),补偿网络的作用由一组运算放大器组成,这些运算放大器在一起产生温度上的3阶或5阶函数.与间接补偿方法一样,该电压用于驱动变容二极管,这反过来又改变了振荡器的输出频率.由于晶体特性的变化意味着没有“一刀切”的功能,因此在TCXO的温度测试期间得出了解决方案.两个电容器阵列用于将室温下的频率调节到标称值,然后在测试期间获得温度补偿功能所需的设置并存储在片上存储器中.
图6综合补偿
最后一种方法通常被称为“数字控制模拟补偿”,并且在小型TCXO设计中常见,因为可以在单个ASIC中提供大量功能.
- 阅读(548)
- [技术支持]什么是差分晶振的相位噪声2018年12月17日 14:17
诸如晶体振荡器之类的信号源在输出频率附近产生一小部分不希望的能量(相位噪声)。 随着通信和雷达等系统性能的提高,它们采用的晶体振荡器的频谱纯度越来越重要。
在频域中测量相位噪声,并且表示为在与期望信号的给定偏移处的1Hz带宽中测量的信号功率与噪声功率的比率。在所需信号的各种偏移处的响应图通常由对应于振荡器中的三个主要噪声产生机制的三个不同斜率组成,如图1所示。相对靠近载波(区域A)的噪声称为闪烁FM噪声;其大小主要取决于晶体的质量。 最佳近距离噪声结果是在4-6 MHz范围内使用5次泛音AT切割晶体或第3次泛音SC切割晶体获得的。虽然平均效果不是很好,但使用10 MHz区域中的3个泛音晶体也可以获得出色的近距离噪声性能,尤其是双旋转型(参见第41页,有关双旋转SC和IT切割晶体的讨论)。较高频率的晶体由于其较低的Q值和较宽的带宽而导致较高的近距噪声。
图1中B区的噪声称为“1 / F”噪声,是由半导体活动引起的。采用低噪声“L2”晶体振荡器的设计技术将其限制在非常低的,通常无关紧要的值。
图1的区域C称为白噪声或宽带噪声。 “L2”晶体振荡器中的特殊低噪声电路相对于标准设计提供了显着的改进(15-20 dB)。
当采用倍频从较低频率的石英晶体获得所需的输出频率时,输出信号的相位噪声增加20 log(倍增因子)。这导致整个电路板上的噪声降低大约为6 dB,用于倍频,10 dB用于频率三倍,20 dB用于十倍乘法。
如图2所示,对于不采用倍频的振荡器,本底噪声几乎与晶体频率无关。因此,对于低噪声地板应用,通常应使用满足长期稳定性要求的最高频率晶体。然而,当较高频率的应用特别需要最小的近端相位噪声时,较低频率的晶体通常可以成倍增加。这是因为近距离相位噪声比使用更高频率晶体获得的噪声性能更不成比例地好。
请注意,与固定频率非补偿晶体振荡器相比,TCXO和VCXO产品中常用的变容二极管和中等Q晶体的引入导致较差的近距离噪声性能。
相位噪声测试
相位噪声测试通过确定在指定输出频率下由振荡器传递的所需能量与在相邻频率传递的不需要的能量的比率来表征振荡器的输出频谱纯度。 该比率通常表示为在来自载波的各种偏移频率下执行的一系列功率测量。功率测量被标准化为1Hz带宽并且相对于载波功率电平表示。 这是NIST技术说明1337中描述的标准相位波动测量,称为l(f)。
图3示出了由NIST建议并由Vectron晶振用于测量l(f)的方法的框图。来自两个相同标称频率的振荡器的信号被施加到混频器输入。除非振荡器具有出色的稳定性,否则一个振荡器必须具有用于锁相的电子调谐。非常窄的频带锁相环(PLL)用于在这两个源之间保持90度的相位差。混频器操作使得当输入信号异相90度(正交)时,混频器的输出是与两个振荡器之间的相位差成比例的小波动电压。通过在频谱分析仪上检查该误差信号的频谱,可以测量这对振荡器的相位噪声性能。如果一个振荡器的噪声占主导地位,则直接测量其相位噪声。当两个测试振荡器电气相似时,有用且实用的近似是每个振荡器贡献测量噪声功率的一半。当三个或更多个振荡器可用于测试时,可以通过求解表示从振荡器对的置换测量的数据的联立方程来精确地计算每个振荡器的相位噪声。
图4显示了实际的l(f)测量系统。 使用该系统测量相位噪声的步骤如下:
1.频谱分析仪屏幕的校准。
2.Phase锁定振荡器并建立正交。
3.记录频谱分析仪读数并将读数标准化为每个振荡器的dBc / Hz SSB。
这些步骤详述如下。
第一步 - 校准
为避免混频器饱和,一个振荡器的信号电平会被10 dB衰减(衰减器“A”)永久衰减。在校准期间,此振荡器的电平额外衰减80 dB(衰减“B”),以改善频谱分析仪的动态范围。振荡器在频率上是机械偏移的,并且所得到的低频差拍信号的幅度表示-80dB的水平;它是所有后续测量的参考。使用扫频分析仪时,此电平调整到频谱分析仪屏幕的顶行。使用数字(FFT)频谱分析仪时,仪器经过校准,可读取相对于此电平的RMS VOLTS /√Hz。当完全电平恢复到混频器并且振荡器被锁相时,将相对于-80dB电平测量相位噪声。
第二步 - 锁相
通过将振荡器机械地调节到相同的频率,振荡器被锁相到正交。当混频器输出为0 Vdc时,指示两个振荡器之间所需的90度相位差。临时连接到频谱分析仪的示波器或零中心电压表是监测正交进度的便捷方式。 PLL的工作带宽必须远低于感兴趣的最低偏移频率,因为PLL部分地抑制了其带宽中的相位噪声。广泛使用的建立适当环路带宽的经验方法是通过衰减器“C”逐步衰减电压控制反馈。通过在推进衰减器“C”的同时比较感兴趣的最低偏移频率处的连续噪声测量,可以找到操作点,其中测量的相位噪声不受衰减器设置的变化的影响。此时,环路带宽不是测量的相位噪声的因子。
第三步 - 读物
读数是根据先前在步骤1中建立的-80dB校准水平进行的。如果频谱分析仪配备齐全以避免测量变化,则使用平滑或平均。 扫描频谱分析仪读数通常需要进行以下每项校正,而以RMS /√Hz显示的数字分析仪读数不需要前两次校正。有关分析仪噪声响应的校正,应参考分析仪手册。
更正
归一化为1 Hz带宽“BW”是测量带宽。 计算假设为10 log10(1 / BW)
10 log10(1/BW)
测量带宽内的噪声是平坦的
扫频分析仪对噪声信号的视频响应。下+ 3dB
+3dB
双边带到单边带显示。-6dB
-6dB
两个振荡器的贡献假设它们具有相同的噪声质量-3dB
-3dB
- 阅读(317)
- [技术支持]CFS-206晶振与CFV-206晶振的区别2018年12月10日 09:47
CFS-20632768DZBB晶振CFS-206晶振32.768kHz晶振±20ppm晶振6pF石英晶振 CFS-20632768DZFB晶振CFS-206晶振32.768kHz晶振±20ppm晶振12.5pF石英晶振 CFS-20632768HZFB晶振CFS-206晶振32.768kHz晶振±5ppm晶振12.5pF石英晶振 CFS-20632768AZFB晶振CFS-206晶振32.768kHz晶振±20ppm晶振12.5pF石英晶振 CFS-20632768DZYB晶振CFS-206晶振32.768kHz晶振±20ppm晶振7pF石英晶振
日本西铁城株式会社主要以生产手表为中心,在多年的生产经营后西铁城公司便开始自主研发手表重要配件——石英晶振.石英晶振分KHZ晶振以及MHZ晶振.手表上使用居多的便是KHZ系列晶振.CM315D晶振,CM315DL晶振,CM315H晶振,CM315E晶振系列.3215封装是手表,手机等小型数码产品使用频率较为广泛.而早期全是CFS-206晶振的天下.
CFS-20632768DZCB晶振CFS-206晶振32.768kHz晶振±20ppm晶振9pF石英晶振 CFS-20632768EZBB晶振CFS-206晶振32.768kHz晶振±10ppm晶振6pF石英晶振 CFS-20632768EZFB晶振CFS-206晶振32.768kHz晶振±10ppm晶振12.5pF石英晶振 CFV-20632000AZFB晶振CFV-206晶振32kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20638400AZFB晶振CFV-206晶振38.4kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20677503DZFB晶振CFV-206晶振77.503kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20675000DZFB晶振CFV-206晶振75kHz晶振±20ppm晶振12.5pF石英晶振
CFV-206100000AZFB晶振CFV-206晶振100kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20640000AZFB晶振CFV-206晶振40kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20632000DZFB晶振CFV-206晶振32kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20665536AZFB晶振CFV-206晶振65.536kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20636000AZFB晶振CFV-206晶振36kHz晶振±30ppm晶振12.5pF石英晶振
CFS-206晶振频率范围30KHZ~100KHZ,周波数偏差20~30ppm,正常情况下都是以20PPM为标准.工作温度-20~+70度.负载电容常用12.5PF,
CFS-20632768EZYB晶振CFS-206晶振32.768kHz晶振±20ppm晶振7pF石英晶振 CFV-20668500DZFB晶振CFV-206晶振68.5kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20668503DZFB晶振CFV-206晶振68.5kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20640003DZFB晶振CFV-206晶振40kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20660003DZFB晶振CFV-206晶振60kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20660000DZFB晶振CFV-206晶振60kHz晶振±20ppm晶振12.5pF石英晶振
CFV-20640000DZFB晶振CFV-206晶振40kHz晶振±20ppm晶振12.5pF石英晶振 CFV-20660000AZFB晶振CFV-206晶振60kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20676800AZFB晶振CFV-206晶振76.8kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20696000AZFB晶振CFV-206晶振96kHz晶振±30ppm晶振12.5pF石英晶振 CFS-20632768HZBB晶振CFS-206晶振32.768kHz晶振±5ppm晶振6pF石英晶振 CFS-20632768HZCB晶振CFS-206晶振32.768kHz晶振±5ppm晶振9pF石英晶振 CFS-20632768HZYB晶振CFS-206晶振32.768kHz晶振±5ppm晶振7pF石英晶振
CFS-206晶振跟CFV-206晶振有点不一样的就是CFS-206晶振只有单独一个频率,就是32.768K,是所有KHZ系列晶振的标准频率.它不像CFV-206晶振,在30~100KHZ内可以订制.频率偏差也比较小,以20PPM为标准.15PPM,10PPM也是可以按照客户的需求来订制.
CFV-20675000BZFB晶振CFV-206晶振75kHz晶振±50ppm晶振12.5pF石英晶振 CFV-20677500BZFB晶振CFV-206晶振77.5kHz晶振±50ppm晶振12.5pF石英晶振 CFV-20675000AZFB晶振CFV-206晶振75kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20638000AZFB晶振CFV-206晶振38kHz晶振±30ppm晶振12.5pF石英晶振 CFV-20677503AZFB晶振CFV-206晶振77.503kHz晶振±30ppm晶振12.5pF石英晶振 CFV206 60.005KAZF晶振CFV-206晶振60.005kHz晶振±30ppm晶振12.5pF石英晶振
CFV206 76.790KAZF晶振CFV-206晶振76.79kHz晶振±30ppm晶振12.5pF石英晶振 CFV206 76.810KAZF晶振CFV-206晶振76.81kHz晶振±30ppm晶振12.5pF石英晶振 CFV206 77.500KAZF晶振CFV-206晶振77.5kHz晶振±30ppm晶振12.5pF石英晶振 CFV206 153.600KAZF晶振CFV-206晶振153.6kHz晶振±30ppm晶振12.5pF石英晶振 CFS206-32.768KDZBB晶振CFS206晶振32.768kHz晶振±20ppm晶振6pF石英晶振 CFV206 153.600KAZF-UB晶振CFV-206晶振153.6kHz晶振±30ppm晶振12.5pF石英晶振 CFV206 32.000KDZSB晶振CFV-206晶振32kHz晶振±20ppm晶振11pF石英晶振
- 阅读(234)
- [常见问题]爱普生新型号FC-135R晶振详细参数2018年11月24日 15:30
爱普生新款产品FC-135R晶振的研发问世让更多消费者们更加的青睐于爱普生晶振系列产品.FC-135R晶振研发,可以从以下参数可以知道FC-135R晶振的频率偏差相对来说是比FC-135晶振较稳定的.频率偏差都是在10PPM与20PPM范围内,而FC-135晶振频率偏差则在10ppm,20ppm,甚至30ppm范围中,并且ESR的阻值比FC-135R晶振的阻值大.
FC-135R晶振参数表
项目 符号 FC-135R晶振产品规格 条件 标称频率范围 f_nom 32.768 kHz 32 kHz至77.5 kHz 请联系我们获取相应的频率。 储存温度 T_stg -55°C至+ 125°C 保存为单个项目 工作温度 T_use -40°C至+ 85°C(+ 105°C) 请联系我们+ 85°C 激励程度 D L 0.5μW(最大1.0μW) 最大1.0μW。如有疑问,请联系我们。 频率容差偏差
(标准)f_tol ±20×10 -6 + 25°C,D L =0.1μW
请咨询高精度产品。顶点温度 钛 + 25°C±5°C 二次温度系数 乙 -0.04×10 -6 /°C 2最大 负载能力 C L 7 pF,9 pF,12.5 pF 请注明 串联电阻 R 1 最大70kΩ 70kΩ至45kΩ 系列容量 C 1 3.4 fF Typ。 3.7 fF至1.6 fF 并行容量 C 0 1.0 pF Typ。 1.3 pF至0.5 pF 频率老化 f_age ±3×10 -6 /年最大 + 25°C,第一年 以下是FC-135R晶振详细参数的编码,一个编码内部有指定相对应的频率,尺寸,负载电容,频率偏差,工作温度,ESR阻值等其它参数.
FC-135R晶振详细参数对应编码表
晶振型号编码 尺寸(长宽高) 型号 频率 负载电容 频率偏差 工作温度 ESR阻值 驱动电平[最大] 周转温度 二次温度系数 年老化率@+25C[Max] 端子电镀 X1A000141000100 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 7 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000200 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 9 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000300 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12.5 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000400 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 9 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000500 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12.5 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141000600 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-20.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001100 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 7 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001500 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-15.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001600 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 6 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au X1A000141001900 3.2 x 1.5 x 0.9 mm FC-135R 32.768kHz 12 pF +/-10.0 ppm -40 to +85 °C ≤ 50 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au FC-135晶振参数表
项目 符号 FC-135晶振产品规格 条件 标称频率范围 f_nom 32.768 kHz 请联系我们获取相应的频率。 储存温度 T_stg -55°C至+ 125°C 保存为单个项目 工作温度 T_use -40°C至+ 85°C(+ 105°C) 请联系我们+ 85°C 激励程度 D L 0.5μW(最大1.0μW) 最大1.0μW。如有疑问,请联系我们。 频率容差偏差
(标准)f_tol ±20×10 -6 + 25°C,D L =0.1μW
请咨询高精度产品。顶点温度 钛 + 25°C±5°C 二次温度系数 乙 -0.04×10 -6 /°C 2最大 负载能力 C L 7 pF,9 pF,12.5 pF 请注明 串联电阻 R 1 最大50kΩ 系列容量 C 1 3.4 fF Typ。 并行容量 C 0 1.1 pF Typ。 频率老化 f_age ±3×10 -6 /年最大 + 25°C,第一年 FC-135晶振详细参数对应编码表
LxWxH/尺寸 Model/型号 编码 Frequency/频率 CL Value/负载 Freq.tol./频率 @+25°C Oper. Temper. Range/工作温度 ESR[MAX] 等效串联电阻 Drive Level[Max]驱动电平 Tumover Temperature
拐点温度
Parabolic Coefficient
频率温度系数
Freq.Aging@+25C[Max]
频率老化
Terminal Plating
端子电镀
3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000100 32.768000 kHz 7 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000200 32.768000 kHz 7 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000300 32.768000 kHz 9 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000400 32.768000 kHz 12.5 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000500 32.768000 kHz 12.5 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000600 32.768000 kHz 9 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000800 32.768000 kHz 9 pF +/-30.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350000900 32.768000 kHz 9 pF +/-8.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001000 32.768000 kHz 15 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001100 32.768000 kHz 12 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001200 32.768000 kHz 8 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001300 32.768000 kHz 10 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001700 32.768000 kHz 12.5 pF +/-30.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350001900 32.768000 kHz 12.5 pF -18.0/+22.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350004900 32.768000 kHz 6 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350005700 32.768000 kHz 10 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006000 32.768000 kHz 6 pF +/-10.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006100 32.768000 kHz 6.5 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 3.2 x 1.5 x 0.9 mm FC-135 Q13FC1350006300 32.768000 kHz 18 pF +/-20.0 ppm -40 to +85 °C ≤ 70 KΩ ≤ 0.5 µW +25ºC +/-5ºC -0.04 x 10^-6/°C² +/-3 ppm Au 爱普生FC-135R晶振与FC-135晶振的尺寸大小还是一样的,只是内部的参数有所调整,不仅是从ESR阻值上或者是从频率偏差上有所改善.现在的客户都追求完美,对石英晶振产品的质量也是一样的,只要可以稍稍提高一丁点的准确度,而且保证自身产品正常运行的情况下客户还是原意去使用新产品的.
- 阅读(688)
- [公司新闻]西铁城晶振CMX309晶振2018年11月23日 14:24
CMX309FBC9.8304MTR晶振9.8304MHz晶振CMX309FBC27.000M-UT晶振27MHz晶振CMX309FLC28.322M-UT晶振28.322MHz石英晶振 CMX309FLC12.288MT晶振12.288MHz晶振CMX309FBC10.000MTR晶振10MHz晶振CMX309FBC27.000M-UT晶振27MHz晶振CMX309FLC28.63636M-UT晶振28.63636MHz石英晶振CMX309FLC12.352MT晶振12.352MHz晶振CMX309FBC10.000MTR晶振10MHz晶振CMX309HBC32.000M-UT晶振32MHz晶振CMX309FLC28.63636M-UT晶振28.63636MHz石英晶振 CMX309FLC12.352MT晶振
CMX309晶振产品实物图
12.352MHz晶振CMX309FBC11.0592MTR晶振11.0592MHz晶振CMX309HBC32.000M-UT晶振32MHz晶振CMX309FLC29.498928M-UT晶振29.498928MHz石英晶振 CMX309FLC13.500MT晶振13.5MHz晶振CMX309FBC11.0592MTR晶振11.0592MHz晶振CMX309HBC32.768M-UT晶振32.768MHz晶振CMX309FLC29.498928M-UT晶振29.498928MHz石英晶振 CMX309FLC13.500MT晶振13.5MHz晶振CMX309FBC11.2896MTR晶振11.2896MHz晶振CMX309HBC32.768M-UT晶振32.768MHz晶振CMX309FLC30.000M-UT晶振30MHz石英晶振 CMX309FLC14.31818MT晶振14.31818MHz晶振CMX309FBC11.2896MTR晶振11.2896MHz晶振CMX309HBC33.000M-UT晶振33MHz晶振CMX309FLC30.000M-UT晶振30MHz石英晶振 CMX309FLC14.31818MT晶振14.31818MHz晶振CMX309FBC12.000MTR晶振12MHz晶振CMX309HBC33.000M-UT晶振33MHz晶振CMX309HWC32.000M-UT晶振32MHz石英晶振 CMX309FLC14.7456MT晶振14.7456MHz晶振CMX309FBC12.000MTR晶振12MHz晶振CMX309HBC33.3333M-UT晶振33.3333MHz晶振CMX309HWC32.000M-UT晶振32MHz石英晶振
CMX309晶振产品尺寸图
CMX309FLC14.7456MT晶振14.7456MHz晶振CMX309FBC12.288MTR晶振12.288MHz晶振CMX309HBC33.3333M-UT晶振33.3333MHz晶振CMX309HWC32.768M-UT晶振32.768MHz石英晶振 CMX309FLC15.360MT晶振15.36MHz晶振CMX309FBC12.288MTR晶振12.288MHz晶振CMX309HBC36.864M-UT晶振36.864MHz晶振CMX309HWC32.768M-UT晶振32.768MHz石英晶振 CMX309FLC15.360MT晶振15.36MHz晶振CMX309FBC14.31818MTR晶振14.31818MHz晶振CMX309HBC36.864M-UT晶振36.864MHz晶振CMX309HWC33.000M-UT晶振33MHz石英晶振 CMX309FLC16.000MT晶振16MHz晶振CMX309FBC14.31818MTR晶振14.31818MHz晶振CMX309HBC40.000M-UT晶振40MHz晶振CMX309HWC33.000M-UT晶振33MHz石英晶振 CMX309FLC16.000MT晶振16MHz晶振CMX309FBC14.7456MTR晶振14.7456MHz晶振CMX309HBC40.000M-UT晶振40MHz晶振CMX309HWC33.8688M-UT晶振33.8688MHz石英晶振 CMX309FLC16.384MT晶振16.384MHz晶振CMX309FBC14.7456MTR晶振14.7456MHz晶振CMX309HBC48.000M-UT晶振48MHz晶振CMX309HWC33.8688M-UT晶振33.8688MHz石英晶振 CMX309FLC16.384MT晶振16.384MHz晶振CMX309FBC16.000MTR晶振16MHz晶振CMX309HBC48.000M-UT晶振48MHz晶振CMX309HWC40.000M-UT晶振40MHz石英晶振 CMX309FLC16.6666MT晶振16.6666MHz晶振CMX309FBC16.000MTR晶振16MHz晶振CMX309HBC50.000M-UT晶振50MHz晶振CMX309HWC40.000M-UT晶振40MHz石英晶振 CMX309FLC16.6666MT晶振16.6666MHz晶振CMX309FBC16.384MTR晶振16.384MHz晶振CMX309HBC50.000M-UT晶振50MHz晶振CMX309HWC48.000M-UT晶振48MHz石英晶振 CMX309FLC17.734475MT晶振17.734475MHz晶振CMX309FBC16.384MTR晶振16.384MHz晶振CMX309HBC53.125M-UT晶振53.125MHz晶振CMX309HWC48.000M-UT晶振48MHz石英晶振 CMX309FLC17.734475MT晶振17.734475MHz晶振CMX309FBC18.432MTR晶振18.432MHz晶振CMX309HBC53.125M-UT晶振53.125MHz晶振CMX309HWC49.152M-UT晶振49.152MHz石英晶振 CMX309FLC18.000MT晶振18MHz晶振CMX309FBC18.432MTR晶振18.432MHz晶振CMX309FLC1.544M-UT晶振1.544MHz晶振CMX309HWC49.152M-UT晶振49.152MHz石英晶振 CMX309FLC18.000MT晶振18MHz晶振CMX309FBC20.000MTR晶振20MHz晶振CMX309FLC1.544M-UT晶振1.544MHz晶振CMX309HWC50.000M-UT晶振50MHz石英晶振 CMX309FLC18.432MT晶振18.432MHz晶振CMX309FBC20.000MTR晶振20MHz晶振CMX309FLC1.8432M-UT晶振1.8432MHz晶振CMX309HWC50.000M-UT晶振50MHz石英晶振 CMX309FLC18.432MT晶振18.432MHz晶振CMX309FBC24.000MTR晶振24MHz晶振CMX309FLC1.8432M-UT晶振1.8432MHz晶振CMX309HWC53.125M-UT晶振53.125MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.000MTR晶振24MHz晶振CMX309FLC2.000M-UT晶振2MHz晶振CMX309HWC53.125M-UT晶振53.125MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.576MTR晶振24.576MHz晶振CMX309FLC2.000M-UT晶振2MHz晶振CMX309FLC27.000MB晶振27MHz石英晶振 CMX309FLC19.6608MT晶振19.6608MHz晶振CMX309FBC24.576MTR晶振24.576MHz晶振CMX309FLC2.048M-UT晶振2.048MHz晶振CMX309FLC6.000MB晶振6MHz石英晶振 CMX309FLC20.000MT晶振20MHz晶振CMX309FBC25.000MTR晶振25MHz晶振CMX309FLC2.048M-UT晶振2.048MHz晶振CMX309FBB19.6608MTR晶振19.6608MHz石英晶振 CMX309FLC20.000MT晶振20MHz晶振CMX309FBC25.000MTR晶振25MHz晶振CMX309FLC2.4576M-UT晶振2.4576MHz晶振CMX309FBB19.6608MTR晶振19.6608MHz石英晶振 CMX309FLC22.1184MT晶振22.1184MHz晶振CMX309FBC27.000MTR晶振27MHz晶振CMX309FLC2.4576M-UT晶振2.4576MHz晶振CMX309FBC30.000MTR晶振30MHz石英晶振 CMX309FLC22.1184MT晶振22.1184MHz晶振
CMX309晶振产品参数表
CMX309FBC27.000MTR晶振27MHz晶振CMX309FLC3.072M-UT晶振3.072MHz晶振CMX309FBC30.000MTR晶振30MHz石英晶振 CMX309FLC24.000MT晶振24MHz晶振CMX309HBC32.000MTR晶振32MHz晶振CMX309FLC3.072M-UT晶振3.072MHz晶振CMX309FLC10.240MTR晶振10.24MHz石英晶振 CMX309FLC24.000MT晶振24MHz晶振CMX309HBC32.000MTR晶振32MHz晶振CMX309FLC3.579545M-UT晶振3.579545MHz晶振CMX309FLC10.240MTR晶振10.24MHz石英晶振 CMX309FLC24.576MT晶振24.576MHz晶振CMX309HBC32.768MTR晶振32.768MHz晶振CMX309FLC3.579545M-UT晶振3.579545MHz晶振CMX309FLC16.257MTR晶振16.257MHz石英晶振 CMX309FLC24.576MT晶振24.576MHz晶振CMX309HBC32.768MTR晶振32.768MHz晶振CMX309FLC3.6864M-UT晶振3.6864MHz晶振CMX309FLC16.257MTR晶振16.257MHz石英晶振 CMX309FLC25.000MT晶振25MHz晶振CMX309HBC33.000MTR晶振33MHz晶振CMX309FLC3.6864M-UT晶振3.6864MHz晶振CMX309HBC3.6864MTR晶振3.6864MHz石英晶振 CMX309FLC25.000MT晶振25MHz晶振CMX309HBC33.000MTR晶振33MHz晶振CMX309FLC4.000M-UT晶振4MHz晶振CMX309HBC3.6864MTR晶振3.6864MHz石英晶振 CMX309FLC25.175MT晶振25.175MHz晶振CMX309HBC33.3333MTR晶振33.3333MHz晶振CMX309FLC4.000M-UT晶振4MHz晶振CMX309FBC22.1184M-UT晶振22.1184MHz石英晶振 CMX309FLC25.175MT晶振25.175MHz晶振CMX309HBC33.3333MTR晶振33.3333MHz晶振CMX309FLC4.096M-UT晶振4.096MHz晶振CMX309FBC28.322MTR晶振28.322MHz石英晶振 CMX309FLC27.000MT晶振27MHz晶振CMX309HBC36.864MTR晶振36.864MHz晶振CMX309FLC4.096M-UT晶振4.096MHz晶振CMX309FBC4.9152MTR晶振4.9152MHz石英晶振 CMX309FLC27.000MT晶振27MHz晶振CMX309HBC36.864MTR晶振36.864MHz晶振CMX309FLC4.9152M-UT晶振4.9152MHz晶振CMX309HBC33.333300MTR晶振33.3333MHz石英晶振 CMX309FLC28.322MT晶振28.322MHz晶振CMX309HBC40.000MTR晶振40MHz晶振CMX309FLC4.9152M-UT晶振4.9152MHz晶振CMX309HWC36.864MTR晶振36.864MHz石英晶振 CMX309FLC28.322MT晶振28.322MHz晶振CMX309HBC40.000MTR晶振40MHz晶振CMX309FLC5.000M-UT晶振5MHz晶振CMX309FLC7.3728M-UT晶振7.3728MHz石英晶振 CMX309FLC28.63636MT晶振28.63636MHz晶振CMX309HBC48.000MTR晶振48MHz晶振CMX309FLC5.000M-UT晶振5MHz晶振CMX309FLC8.000M-UT晶振8MHz石英晶振 CMX309FLC28.63636MT晶振28.63636MHz晶振CMX309HBC48.000MTR晶振48MHz晶振CMX309FLC6.000M-UT晶振6MHz晶振CMX309FLC8.000M-UT晶振8MHz石英晶振 CMX309FLC29.498928MT晶振29.498928MHz晶振CMX309HBC50.000MTR晶振50MHz晶振CMX309FLC6.000M-UT晶振6MHz晶振CMX309FLC8.192M-UT晶振8.192MHz石英晶振 CMX309FLC29.498928MT晶振29.498928MHz晶振CMX309HBC50.000MTR晶振50MHz晶振CMX309FLC6.144M-UT晶振6.144MHz晶振CMX309FLC8.192M-UT晶振8.192MHz石英晶振 CMX309FLC30.000MT晶振30MHz晶振CMX309HBC53.125MTR晶振53.125MHz晶振CMX309FLC6.144M-UT晶振6.144MHz晶振CMX309FLC9.8304M-UT晶振9.8304MHz石英晶振 CMX309FLC30.000MT晶振30MHz晶振CMX309HBC53.125MTR晶振53.125MHz晶振CMX309FLC7.3728M-UT晶振7.3728MHz晶振CMX309FBC1.8432M-UT晶振1.8432MHz石英晶振 CMX309HWC32.000MT晶振32MHz晶振CMX309FBC1.000M-UT晶振1MHz晶振CMX309FBC1.544M-UT晶振1.544MHz晶振CMX309FBC1.8432M-UT晶振1.8432MHz石英晶振 CMX309HWC32.000MT晶振32MHz晶振CMX309FBC1.000M-UT晶振1MHz晶振CMX309HWC32.768MT晶振32.768MHz晶振CMX309FBC1.544M-UT晶振1.544MHz石英晶振 晶振晶振晶振晶振晶振晶振CMX309HWC32.768MT晶振32.768MHz石英晶振
- 阅读(296)
- [行业新闻]FOX CRYSTAL福克斯晶振原厂代码2018年11月12日 10:03
- FQ5032B-12.000FOX晶振FOXLF024S无源晶振FOXSDLF/080R-20/TRFOX晶振FQ7050B-6.000无源晶振 FQ5032B-12.000FOX晶体谐振器FOXSDLF/160-20贴片晶振FOXSDLF/080R-20/TRFOX晶体谐振器FOXLF100-20贴片晶振 FQ5032B-25.000美国进口晶振FOXSDLF/160-20晶体谐振器FQ3225B-12.000美国进口晶振FOXLF200-20晶体谐振器 FQ5032B-25.000晶振FOXSDLF/160-20福克斯晶振FQ3225B-12.000晶振FOXLF080-20福克斯晶振 FQ5032B-25.000无源晶振FOXSDLF/200-20FOX晶振FQ3225B-12.000无源晶振FOXLF115-20FOX晶振 FSMLF327贴片晶振FOXSDLF/200-20FOX晶体谐振器FOXSLF/200-20贴片晶振NC38LF-327FOX晶体谐振器 FSMLF327晶体谐振器FOXSDLF/200-20美国进口晶振FOXSLF/120-20晶体谐振器FOXLF040美国进口晶振 FSMLF327福克斯晶振FOXSDLF/080-20晶振FOXSLF/040福克斯晶振NC26LF-327晶振 FQ7050B-8.000FOX晶振FOXSDLF/080-20无源晶振FOXSLF/184-20FOX晶振FOXLF036S无源晶振 FQ7050B-8.000FOX晶体谐振器FOXSDLF/080-20贴片晶振FOXSLF/036SFOX晶体谐振器FQ3225B-25.000贴片晶振 FQ7050B-8.000美国进口晶振FOXSDLF/250F-20晶体谐振器FOXSLF/221-20美国进口晶振FQ3225B-25.000晶体谐振器 FQ7050B-7.3728晶振FOXSDLF/250F-20福克斯晶振FOXSLF/100-20晶振FQ3225B-25.000福克斯晶振 FQ7050B-7.3728无源晶振FOXSDLF/250F-20FOX晶振FX252BS-16.000无源晶振FQ1045A-3.6864FOX晶振 FQ7050B-7.3728贴片晶振FOXSDLF/147-20FOX晶体谐振器FX252BS-16.000贴片晶振FQ1045A-3.6864FOX晶体谐振器 FQ1045A-6.000晶体谐振器FOXSDLF/147-20美国进口晶振FX252BS-16.000晶体谐振器FQ1045A-3.6864美国进口晶振 FQ1045A-6.000福克斯晶振FOXSDLF/147-20晶振FQ5032B-20.000福克斯晶振FOXLF018S晶振 FQ1045A-6.000FOX晶振FOXSDLF/240F-20无源晶振FQ5032B-20.000FOX晶振FOXSDLF/036S无源晶振 FQ1045A-4.000FOX晶体谐振器FOXSDLF/240F-20贴片晶振FQ5032B-20.000FOX晶体谐振器FOXSDLF/036S贴片晶振 FQ1045A-4.000美国进口晶振FOXSDLF/240F-20晶体谐振器FQ7050B-6.000美国进口晶振FOXSDLF/036S晶体谐振器 FQ1045A-4.000晶振FOXSDLF/080R-20/TR福克斯晶振FQ7050B-6.000晶振FOXSDLF/120R-20/TR福克斯晶振 FQ5032B-12.000福克斯晶振FQ1045A-4.000晶振FOXSDLF/080R-20/TR福克斯晶振FQ7050B-6.000晶振FOXSDLF/120R-20/TR福克斯晶振 FOXSDLF/120R-20/TRFOX晶振FOXSDLF/221-20无源晶振FQ7050BR-7.3728FOX晶振FOXLF120-20无源晶振FOXSDLF/160R-20/TRFOX晶振 FOXSDLF/120R-20/TRFOX晶体谐振器FOXSDLF/221-20贴片晶振FQ7050BR-7.3728FOX晶体谐振器FOXLF160贴片晶振FOXSDLF/200R-20/TRFOX晶体谐振器 FSRLF327-6美国进口晶振FOXSDLF/073-20晶体谐振器FQ7050BR-7.3728美国进口晶振FOXLF160-20晶体谐振器FOXSDLF/200R-20/TR美国进口晶振 FSRLF327-6晶振FOXSDLF/073-20福克斯晶振FX122-327晶振FOXLF040A福克斯晶振FOXSDLF/200R-20/TR晶振 FSRLF327-6无源晶振FOXSDLF/073-20FOX晶振FX122-327无源晶振FOXLF0368-20FOX晶振FOXSDLF/245FR-20/TR无源晶振 FOXLF115贴片晶振FOXSDLF/049-20FOX晶体谐振器FX122-327贴片晶振FOXSLF/143-20FOX晶体谐振器FOXSDLF/245FR-20/TR贴片晶振 FQ3225B-24.000晶体谐振器FOXSDLF/049-20美国进口晶振FOXSLF/115-20晶体谐振器FOXSDLF/143-20美国进口晶振FOXSDLF/245FR-20/TR晶体谐振器FQ3225B-24.000福克斯晶振FOXSDLF/049-20晶振FOXSLF/250F-20福克斯晶振FOXSDLF/143-20晶振FQ5032B-24.576福克斯晶振 FQ3225B-24.000FOX晶振FOXSDLF/250FR-20/TR无源晶振FOXSLF/147-20FOX晶振FOXSDLF/143-20无源晶振FQ5032B-24.576FOX晶振 FOXLF0368SFOX晶体谐振器FOXSDLF/250FR-20/TR贴片晶振FOXSLF/073-20FOX晶体谐振器FOXSDLF/245F-20贴片晶振FQ5032B-24.576FOX晶体谐振器 FOXSDLF/184-20美国进口晶振FOXSDLF/250FR-20/TR晶体谐振器FOXSLF/160-20美国进口晶振FOXSDLF/245F-20晶体谐振器FQ5032B-24.000美国进口晶振 FOXSDLF/184-20晶振FX425B-12.000福克斯晶振FOXSLF/160晶振FOXSDLF/245F-20福克斯晶振FQ5032B-24.000晶振 FOXSDLF/184-20无源晶振FX425B-12.000FOX晶振FOXSLF/080无源晶振FOXSDLF/041FOX晶振FQ5032B-24.000无源晶振 FOXSDLF/060-20贴片晶振FX425B-12.000FOX晶体谐振器FOXSLF/128-20贴片晶振FOXSDLF/041FOX晶体谐振器FQ5032B-16.000贴片晶振 FOXSDLF/060-20晶体谐振器FQ5032B-18.432美国进口晶振FOXSLF/245F-20晶体谐振器FOXSDLF/041美国进口晶振FQ5032B-16.000晶体谐振器 FOXSDLF/060-20福克斯晶振FQ5032B-18.432晶振FOXSLF/040A福克斯晶振FOXSDLF/100-20晶振FQ5032B-16.000福克斯晶振 FOXSDLF/040FOX晶振FQ5032B-18.432无源晶振FOXSLF/120FOX晶振FOXSDLF/100-20无源晶振FQ5032BR-25.000FOX晶振 FOXSDLF/040FOX晶体谐振器FX252BS-24.000贴片晶振FOXSLF/0368-20FOX晶体谐振器FOXSDLF/100-20贴片晶振FQ5032BR-25.000FOX晶体谐振器 FOXSDLF/040美国进口晶振FX252BS-24.000晶体谐振器FOXSLF/240F-20美国进口晶振FOXSDLF/160R-20/TR晶体谐振器FQ5032BR-25.000美国进口晶振 FOXSDLF/221-20晶振FX252BS-24.000福克斯晶振FOXLF250F-20晶振FOXSDLF/160R-20/TR福克斯晶振FQ5032BR-12.000晶振
- 阅读(205)
- [行业新闻]NDK晶振编码2018年11月07日 10:46
- NX3225GA-26.000M-STD-CRG-2石英晶体谐振器NX5032GA-16.384000MHZ-LN-CD-1音叉晶体NX2016SA-26MHZ-EXS00A-CS06025贴片晶振NX3225SA-32.000MHZ-STD-CSR-1时钟晶振NX8045GB-14.318180MHZ谐振器NX3225SC-30.320M-EXS00A-CS03981贴片晶振NX2520SA-16MHZ-STD-CSW-5石英晶振 NX3225GA-26.000M-STD-CRG-2音叉晶体NX5032GA-20.000000MHZ-LN-CD-1时钟晶振NX2016SA-26MHZ-EXS00A-CS06025谐振器NX3225SA-32.000MHZ-STD-CSR-1贴片晶振NX8045GB-7.3728MHZ-STD-CSF-3石英晶振NX3225SC-30.320M-EXS00A-CS03981谐振器NX2520SA-16MHZ-STD-CSW-5NDK晶振 NX3225GA-26.000M-STD-CRG-2时钟晶振NX5032GA-20.000000MHZ-LN-CD-1贴片晶振NX2016SA-26MHZ-EXS00A-CS06025石英晶振NX3225SA-26.000MHZ-STD-CSR-1谐振器NX8045GB-7.3728MHZ-STD-CSF-3NDK晶振NX3225SC-30.320M-EXS00A-CS03981石英晶振NX1612AA-26MHZ-TI2NDK石英晶振 NX8045GB-8.000000MHZ贴片晶振NX5032GA-20.000000MHZ-LN-CD-1谐振器NX5032GA-16.000M-STD-CSU-2NDK晶振NX3225SA-26.000MHZ-STD-CSR-1石英晶振NX8045GB-7.3728MHZ-STD-CSF-3NDK石英晶振NX3225SA-12MHZ-STD-CSR-6NDK晶振NX1612AA-26MHZ-TI2石英晶体谐振器 NX8045GB-8.000000MHZ谐振器NX5032GA-32.000000MHZ-LN-CD-1石英晶振NX5032GA-16.000M-STD-CSU-2NDK石英晶振NX3225SA-26.000MHZ-STD-CSR-1NDK晶振NX8045GB-6MHZ-STD-CSF-3石英晶体谐振器NX3225SA-12MHZ-STD-CSR-6NDK石英晶振NX1612AA-26MHZ-TI2音叉晶体 NX8045GB-8.000000MHZ石英晶振NX5032GA-32.000000MHZ-LN-CD-1NDK晶振NX5032GA-16.000M-STD-CSU-2石英晶体谐振器NX3225SA-20.000MHZ-STD-CSR-1NDK石英晶振NX8045GB-6MHZ-STD-CSF-3音叉晶体NX3225SA-12MHZ-STD-CSR-6石英晶体谐振器NX1612AA-26MHZSTD-CSI-1时钟晶振 NX8045GB-12.000000MHZNDK晶振NX5032GA-32.000000MHZ-LN-CD-1NDK石英晶振NX5032GA-8.000M-STD-CSU-1音叉晶体NX3225SA-20.000MHZ-STD-CSR-1石英晶体谐振器NX8045GB-6MHZ-STD-CSF-3时钟晶振NX3225SA-16MHZ-STD-CSR-6音叉晶体NX1612AA-26MHZSTD-CSI-1贴片晶振 NX8045GB-12.000000MHZNDK石英晶振NX3225GA-26MHZ-TI石英晶体谐振器NX5032GA-8.000M-STD-CSU-1时钟晶振NX3225SA-20.000MHZ-STD-CSR-1音叉晶体NX3225GA-16.000M-STD-CRG-1贴片晶振NX3225SA-16MHZ-STD-CSR-6时钟晶振NX1612AA-26MHZSTD-CSI-1谐振器 NX8045GB-12.000000MHZ石英晶体谐振器NX3225GA-26MHZ-TI音叉晶体NX5032GA-8.000M-STD-CSU-1贴片晶振NX3225SA-14.31818MHZ-STD-CSR-1时钟晶振NX3225GA-16.000M-STD-CRG-1谐振器NX3225SA-16MHZ-STD-CSR-6贴片晶振NX2520SA-16.000000MHZ-W1石英晶振 NX8045GB-5MHZ-STD-CSF-3音叉晶体NX3225GA-26MHZ-TI时钟晶振NX8045GB-13.560000MHZ谐振器NX3225SA-14.31818MHZ-STD-CSR-1贴片晶振NX3225GA-16.000M-STD-CRG-1石英晶振NX3225SA-26.000000MHZ-G4谐振器NX2520SA-16.000000MHZ-W1NDK晶振 NX8045GB-5MHZ-STD-CSF-3时钟晶振NX3225GA-16.000M-STD-CRG-2贴片晶振NX8045GB-13.560000MHZ石英晶振NX3225SA-14.31818MHZ-STD-CSR-1谐振器NX3225GA-12MHZ-STD-CRG-1NDK晶振NX3225SA-26.000000MHZ-G4石英晶振NX2520SA-16.000000MHZ-W1NDK石英晶振 NX8045GB-5MHZ-STD-CSF-3贴片晶振NX3225GA-16.000M-STD-CRG-2谐振器NX8045GB-13.560000MHZNDK晶振NX3225SA-24.576MHZ-STD-CSR-1石英晶振NX3225GA-12MHZ-STD-CRG-1NDK石英晶振NX3225SA-26.000000MHZ-G4NDK晶振NX8045GB-8.000M-STD-CSJ-1石英晶体谐振器 NX8045GB-18.432000MHZ谐振器NX3225GA-16.000M-STD-CRG-2石英晶振NX5032GB-12MHZ-STD-CSK-5NDK石英晶振NX3225SA-24.576MHZ-STD-CSR-1NDK晶振NX3225GA-12MHZ-STD-CRG-1石英晶体谐振器NX3225SA-26.000000MHZ-B1NDK石英晶振NX8045GB-8.000M-STD-CSJ-1音叉晶体 NX8045GB-18.432000MHZ石英晶振NX3225GA-27.000M-STD-CRG-1NDK晶振NX5032GB-12MHZ-STD-CSK-5石英晶体谐振器NX3225SA-24.576MHZ-STD-CSR-1NDK石英晶振NX3225SA-12.000M-STD-CRS-2音叉晶体NX3225SA-26.000000MHZ-B1石英晶体谐振器NX8045GB-8.000M-STD-CSJ-1时钟晶振 NX8045GB-18.432000MHZNDK晶振NX3225GA-27.000M-STD-CRG-1NDK石英晶振NX5032GB-12MHZ-STD-CSK-5音叉晶体NX3225SA-27.000MHZ-STD-CSR-1石英晶体谐振器NX3225SA-12.000M-STD-CRS-2时钟晶振NX3225SA-26.000000MHZ-B1音叉晶体NX3225GA-14.31818M-STD-CRG-1贴片晶振 NX8045GB-40.000000MHZNDK石英晶振NX3225GA-27.000M-STD-CRG-1石英晶体谐振器NX5032SD-13.56MHZ-STD-CSY-1时钟晶振NX3225SA-27.000MHZ-STD-CSR-1音叉晶体NX3225SA-12.000M-STD-CRS-2贴片晶振NX3225SA-16.000000MHZ-T1时钟晶振NX3225GA-14.31818M-STD-CRG-1谐振器 NX8045GB-40.000000MHZ石英晶体谐振器NX3225SA-24.000MHZ-STD-CSR-1音叉晶体NX5032SD-13.56MHZ-STD-CSY-1贴片晶振NX3225SA-27.000MHZ-STD-CSR-1时钟晶振NX3225SA-12.000MHZ-STD-CSR-1谐振器NX3225SA-16.000000MHZ-T1贴片晶振NX3225GA-14.31818M-STD-CRG-1石英晶振 NX8045GB-40.000000MHZ音叉晶体NX3225SA-24.000MHZ-STD-CSR-1时钟晶振NX5032SD-13.56MHZ-STD-CSY-1谐振器NX3225SA-32M-EXS00A-02994贴片晶振NX3225SA-12.000MHZ-STD-CSR-1石英晶振NX3225SA-16.000000MHZ-T1谐振器NX3225GA-10.000M-STD-CRG-1NDK晶振 NX5032GA-24.000000MHZ-LN-CD-1时钟晶振NX3225SA-24.000MHZ-STD-CSR-1贴片晶振NX2016AB-26MHZSB1石英晶振NX3225SA-32M-EXS00A-02994谐振器NX3225SA-12.000MHZ-STD-CSR-1NDK晶振NX3225SA-26.000000MHZ-G2石英晶振NX3225GA-10.000M-STD-CRG-1NDK石英晶振 NX5032GA-24.000000MHZ-LN-CD-1贴片晶振NX5032GA-27M-STD-CSK-4谐振器NX2016AB-26MHZSB1NDK晶振NX3225SA-32M-EXS00A-02994石英晶振NX3225GB-16M-STD-CRA-2NDK石英晶振NX3225SA-26.000000MHZ-G2NDK晶振NX3225GA-10.000M-STD-CRG-1石英晶体谐振器 NX5032GA-24.000000MHZ-LN-CD-1谐振器NX5032GA-27M-STD-CSK-4石英晶振NX2016AB-26MHZSB1NDK石英晶振NX3225SA-25.000M-STD-CSR-3NDK晶振NX3225GB-16M-STD-CRA-2石英晶体谐振器NX3225SA-26.000000MHZ-G2NDK石英晶振NX3225GA-30.000M-STD-CRG-1音叉晶体 NX5032GA-25.000000MHZ-LN-CD-1石英晶振NX5032GA-27M-STD-CSK-4NDK晶振NX3225GA-12.288M-STD-CRG-2石英晶体谐振器NX3225SA-25.000M-STD-CSR-3NDK石英晶振NX3225GB-16M-STD-CRA-2音叉晶体NX3225SA-16.000000MHZ-B3石英晶体谐振器NX3225GA-30.000M-STD-CRG-1时钟晶振 NX5032GA-25.000000MHZ-LN-CD-1NDK晶振NX5032GA-12.288M-STD-CSK-4NDK石英晶振NX3225GA-12.288M-STD-CRG-2音叉晶体NX3225SA-25.000M-STD-CSR-3石英晶体谐振器NX3225SA-13.56M-STD-CSR-3时钟晶振NX3225SA-16.000000MHZ-B3音叉晶体NX3225GA-30.000M-STD-CRG-1贴片晶振 NX5032GA-25.000000MHZ-LN-CD-1NDK石英晶振NX5032GA-12.288M-STD-CSK-4石英晶体谐振器NX3225GA-12.288M-STD-CRG-2时钟晶振NX3225SA-20.000M-STD-CSR-3音叉晶体NX3225SA-13.56M-STD-CSR-3贴片晶振NX3225SA-16.000000MHZ-B3时钟晶振NX3225GA-30.000M-STD-CRG-2谐振器 NX5032GA-27.000000MHZ-LN-CD-1石英晶体谐振器NX5032GA-12.288M-STD-CSK-4音叉晶体NX3225GA-13.56M-STD-CRG-2贴片晶振NX3225SA-20.000M-STD-CSR-3时钟晶振NX3225SA-13.56M-STD-CSR-3谐振器NX3225SA-26.000000MHZ-G3贴片晶振NX3225GA-30.000M-STD-CRG-2石英晶振 NX5032GA-27.000000MHZ-LN-CD-1音叉晶体NX5032GA-14.31818M-STD-CSK-4时钟晶振NX3225GA-13.56M-STD-CRG-2谐振器NX3225SA-20.000M-STD-CSR-3贴片晶振NX3225SA-40M-EXS00A-CS03880石英晶振NX3225SA-26.000000MHZ-G3谐振器NX3225GA-30.000M-STD-CRG-2NDK晶振 NX5032GA-27.000000MHZ-LN-CD-1时钟晶振NX5032GA-14.31818M-STD-CSK-4贴片晶振NX3225GA-13.56M-STD-CRG-2石英晶振NX3225SA-26.000M-STD-CSQ-1谐振器NX3225SA-40M-EXS00A-CS03880NDK晶振NX3225SA-26.000000MHZ-G3石英晶振NX8045GB-32.000000MHZNDK石英晶振 NX5032GA-16.000000MHZ-LN-CD-1贴片晶振NX5032GA-14.31818M-STD-CSK-4谐振器NX3225GA-14.7456M-STD-CRG-2NDK晶振NX3225SA-26.000M-STD-CSQ-1石英晶振NX3225SA-40M-EXS00A-CS03880NDK石英晶振NX3225SA-39.000000MHZ-B4NDK晶振NX5032GA-13.560000MHZ-LN-CD-1石英晶体谐振器 NX5032GA-16.000000MHZ-LN-CD-1谐振器NX5032GA-25.000M-STD-CSK-4石英晶振NX3225GA-14.7456M-STD-CRG-2NDK石英晶振NX3225SA-26.000M-STD-CSQ-1NDK晶振NX3225SA-25.000M-STD-CSR-6石英晶体谐振器NX3225SA-39.000000MHZ-B4NDK石英晶振NX5032GA-13.560000MHZ-LN-CD-1音叉晶体 NX5032GA-16.000000MHZ-LN-CD-1石英晶振NX5032GA-25.000M-STD-CSK-4NDK晶振NX3225GA-14.7456M-STD-CRG-2石英晶体谐振器NX3225SA-30.000M-STD-CSR-3NDK石英晶振NX3225SA-25.000M-STD-CSR-6音叉晶体NX3225SA-39.000000MHZ-B4石英晶体谐振器NX5032GA-13.560000MHZ-LN-CD-1时钟晶振 NX5032GA-10.000000MHZ-LN-CD-1NDK晶振NX5032GA-25.000M-STD-CSK-4NDK石英晶振NX3225GA-27.12M-STD-CRG-2音叉晶体NX3225SA-30.000M-STD-CSR-3石英晶体谐振器NX3225SA-25.000M-STD-CSR-6时钟晶振NX3215SA-32.768K-STD-MUA-8音叉晶体NX8045GB-16.000M-STD-CSJ-1贴片晶振 NX5032GA-10.000000MHZ-LN-CD-1NDK石英晶振NX5032GC-16MHZ-STD-CSK-6石英晶体谐振器NX3225GA-27.12M-STD-CRG-2时钟晶振NX3225SA-30.000M-STD-CSR-3音叉晶体NX2016SA-24.9231M-CHP-CZS-9贴片晶振NX3215SA-32.768K-STD-MUA-8时钟晶振NX5032GA-11.0592M-STD-CSK-4谐振器 NX5032GA-10.000000MHZ-LN-CD-1石英晶体谐振器NX5032GC-16MHZ-STD-CSK-6音叉晶体NX3225GA-27.12M-STD-CRG-2贴片晶振NX3225SA-32MHZ-EXS00A-CS02368时钟晶振NX2016SA-24.9231M-CHP-CZS-9谐振器NX3215SA-32.768K-STD-MUA-8贴片晶振NX5032GA-11.0592M-STD-CSK-4石英晶振 NX5032GA-12.000000MHZ-LN-CD-1音叉晶体NX5032GC-16MHZ-STD-CSK-6时钟晶振NX3225GA-25.000M-STD-CRG-1谐振器NX3225SA-32MHZ-EXS00A-CS02368贴片晶振NX2016SA-24.9231M-CHP-CZS-9石英晶振NX3215SA-32.768K-STD-MUA-9谐振器NX5032GA-11.0592M-STD-CSK-4NDK晶振 NX5032GA-12.000000MHZ-LN-CD-1时钟晶振NX5032GA-12MHZ-STD-CSK-4贴片晶振NX3225GA-25.000M-STD-CRG-1石英晶振NX3225SA-32MHZ-EXS00A-CS02368谐振器NX3225SA-12MHZ-STD-CSR-3NDK晶振NX3215SA-32.768K-STD-MUA-9石英晶振NX5032GA-30.000M-STD-CSK-4NDK石英晶振 NX5032GA-12.000000MHZ-LN-CD-1贴片晶振NX5032GA-12MHZ-STD-CSK-4谐振器NX3225GA-25.000M-STD-CRG-1NDK晶振NX3225SA-25.000M-STD-CRS-2石英晶振NX3225SA-12MHZ-STD-CSR-3NDK石英晶振NX3215SA-32.768K-STD-MUA-9NDK晶振NX5032GA-30.000M-STD-CSK-4石英晶体谐振器 NX5032GA-48.000000MHZ-LN-CD-1谐振器NX5032GA-12MHZ-STD-CSK-4石英晶振NX3225GA-25.000M-STD-CRG-2NDK石英晶振NX3225SA-25.000M-STD-CRS-2NDK晶振NX3225SA-12MHZ-STD-CSR-3石英晶体谐振器NX3215SA-32.768K-STD-MUA-14NDK石英晶振NX5032GA-30.000M-STD-CSK-4音叉晶体 NX5032GA-48.000000MHZ-LN-CD-1石英晶振NX3225SA-16.000MHZ-STD-CSR-1NDK晶振NX3225GA-25.000M-STD-CRG-2石英晶体谐振器NX3225SA-25.000M-STD-CRS-2NDK石英晶振NX1612SA-32.000MHZ-CHP-CIS-3音叉晶体NX3215SA-32.768K-STD-MUA-14石英晶体谐振器NX3225SA-24.000M-STD-CSR-3时钟晶振 NX5032GA-48.000000MHZ-LN-CD-1NDK晶振NX3225SA-16.000MHZ-STD-CSR-1NDK石英晶振NX3225GA-25.000M-STD-CRG-2音叉晶体NX3225SA-27M-STD-CRS-2石英晶体谐振器NX1612SA-32.000MHZ-CHP-CIS-3时钟晶振NX3215SA-32.768K-STD-MUA-14音叉晶体NX5032GA-24.000M-STD-CSK-4贴片晶振 NX5032GA-16.384000MHZ-LN-CD-1NDK石英晶振NX3225SA-16.000MHZ-STD-CSR-1石英晶体谐振器NX8045GB-14.318180MHZ时钟晶振NX3225SA-27M-STD-CRS-2音叉晶体NX1612SA-32.000MHZ-CHP-CIS-3贴片晶振NX3215SA-32.768K-STD-MUS-2时钟晶振NX3225SA-22.000MHZ-STD-CSR-1谐振器 NX5032GA-16.384000MHZ-LN-CD-1石英晶体谐振器NX3225SA-32.000MHZ-STD-CSR-1音叉晶体NX8045GB-14.318180MHZ贴片晶振NX3225SA-27M-STD-CRS-2时钟晶振NX2520SA-16MHZ-STD-CSW-5谐振器NX3215SA-32.768K-STD-MUS-2贴片晶振NX3225SA-25.000MHZ-STD-CSR-1石英晶振
- 阅读(203)
- [行业新闻]精工爱普生晶振公司2018年10月29日 18:18
世界上首家使用商业化石英晶振手表的公司是SUWA SEIKOSHA Co.,Ltd.(现称Seiko Epson Corporation).该公司的工程师经过不断的努力,成功的将石英晶体器件小型化,大大的减少了石英晶振产品设备的尺寸.但这项伟大的事迹也许很多人都知道这个事实,但却很少人知道工程师们在背后的战斗.
电子元器件业务的世界是非常残酷的,即使爱普生晶振公司投入了大量的工程师和大量资金来开发尖端技术,即使可以成功的将外部尺寸减半同时又可以提高性能也无法提高价格.实际上除了将尺寸缩小到一半,客户都不愿意接受这个新产品,除非价格可以进一步的降低.这种令人发指的要求放在电子元器件业务上是很正常的.
音叉晶振也是这样,音叉晶体是1969年从世界上第一块石英表”Quartz Astron”中提取开发出来的.并一直在缩小石英晶振的体积从而导致音叉晶振的尺寸越来越小,价格越来越便宜.结果,石英手表以惊人的速度快速扩张.但随着市场的扩大,进入市场的制造商也不断的增加,参与市场的竞争变得越来越激烈.从1975年到1980年这五年之间,音叉式石英晶体谐振器的单价已经降至五分之一.然而SUWA SEIKOSHA(现称精工爱普生SEIKO EPSON)拥有光刻技术,基于这项技术,所以精工爱普生晶振能够以更紧凑及更低成本的方式快速推出市场.从而让精工爱普生晶振奠定了基础.在20世纪80年代早期,精工爱普生晶振已经发展成为一家全球性公司,领导着音叉晶体振荡器行业.
当音叉型水晶振动子遍布全世界,精工爱普生晶振成为世界领先的音叉晶体制造商,不可否认他们已经到达了这种地位,通常情况下,这样的现状可以让整个公司满足下来并安于现状.但是,那些的日本工厂位于长野县石英晶振设备部门的工作人员根本不满足这种情况.原因是他们无法让客户承认精工爱普生晶振是石英晶体设备制造商.虽然现在也已经开始为”精工”品牌手表生产晶振产品,也算是零部件供应商了.精工爱普生晶振极力想得到客户的认可,20世纪70年代中期开始他们开始寻求外销单,开始对外销售石英晶体产品,然后经营规模就变得越来越大,20世纪80年代的前半部分已经大大超过钟表制造商的部分业务.当销售人员拜访客户时,许多人对精工爱普生的评论就是一家手表制造商的石英晶体设备部门.但他们没有气馁,并没有因为客户的评论而丧失信心.而是从那个时候起,石英设备部门的员工们都被点燃了壮志雄心.希望将企业进一步的扩展为一个独立的商业部门.
为什么精工爱普生会没办法被认可是石英晶体设备制造商.尽管他们几乎已经统治了全球的音叉晶体的市场.其实答案很简单,事实上,音叉晶体的市场并不是石英器件的主要竞争领域,主要是AT切割晶体和石英晶体振荡器的市场,他们被用于通信设备.而SUWA SEIKO当时是还没有进入这个市场的.并且在20世纪80年代早期,AT切割晶体单元和晶体振荡的市场需求迅速增长.在那之前AT切割晶体的应用仅限于商业通信设备等.但当数字化浪潮的袭来,使得消费电子设备的需求量倍增,称为个人电脑的全新电子设备市场也在以极快的速度扩张.
- 阅读(2955)
- [技术支持]石英晶体振荡器的低相位噪声2018年09月18日 11:21
频率生成是当今在商业,工业和军事技术中的基本功能,所有的振荡器信号都包含着一定程度的噪声.尽管是很简单的振荡器,比如电阻电容(RC)或电感电容(LC)谐振器构成的振荡器构成简单振荡器的电路是足够的.很是很多应用要求石英晶体振荡器提供额外的稳定性和较低的噪声.
理想的振荡器可以在单一频率下生产完美的重复信号,然而电子元器件和频率确定谐振电路中的噪声过程可导致瞬时频率围绕其中心值变化或抖动.这导致在任何给定时间精确频率的不确定性,并且由振荡器产生的频谱分布在窄频带上,其中大部分能量集中在中心频率附近.
有很多种方法可以测量或者表达这种振荡器噪声现象,但对于精密振荡器来说,最常见的方法是相位噪声.相位噪声在频域中被测量,绘制为信号幅度与频率,这是在频谱分析仪上显示的表示.对于相对有噪声的信号,如果测量带宽设置得当,则可以在频谱分析仪上直接观察到相位噪声.但对于大多数晶体振荡器产生的清洁信号,分析仪的宽带本振的噪声高于等测源的噪声,因此无法直接观察被测单元的噪声.因此必须采用一些提高测量系统灵敏度的方法.
相位噪声测量方框图
实现这种灵敏度提高的最常用方法是将一个石英晶体振荡器与另一个振荡器进行比较。这就是大多数商用相位噪声测量系统的操作方式。将非常低的噪声参考振荡器被调整为与被测试单元完全相同的频率。当这两个信号被馈送到相位检测器,它们的相对相位被调整并锁定在90度偏移时,混频器中的载波频率被取消。在对高频分量进行滤波之后,只有残余噪声调制已经被混合到基带频率。然后对该噪声信号进行放大以提高灵敏度。由于高频信号已经通过混合和滤波处理被去除,因此剩余噪声信号可以用非常低的带宽分析器来检测。
为了使相位噪声测量更加标准化,结果通常表示为在中心载波频率到载波信号功率的给定偏移距离处以1MHZ带宽测量的边带噪声功率与载波信号功率的比率,然后生产如下图所示的图表.
这些图显示了在10 MHz和100 MHz的精密低噪声晶体振荡器的性能。这两个单元在大于10kHz偏移的载波上实现比170 dBc/Hz更好的噪声基底。展现了商业产品的最先进性能。
在接近载波的较低偏移频率下,相位噪声由晶体谐振器的质量决定。100MHz晶体具有比10 MHz晶体低得多的“Q”,因此在低偏移处噪声更高。
精密石英晶体振荡器已被证明可以提供最好的相位噪声性能从任何商用设备。由于石英固有的频率稳定性,即使是简单的晶体时钟振荡器也能够给出非常好的相位噪声性能。
- 阅读(243)
- [常见问题]石英晶体的压电特性2018年09月11日 16:10
石英晶振材料中的二氧化硅(SiO2)原子是自然状态下的.与其电偶极是相互平衡的电中性.下图是二氧化硅以二维空间的简化结构图.当我们在硅原子上方及硅原子下方施加正电场及负电场时,空间系统为了维持电位平衡,在硅侧带正电,氧侧带负电,两个氧原子会相互排斥,在氧原子下方形成一个感应正电场区域.若将情况相反,当我们在硅原子上方及氧原子下方分别给予负电场及正电场时,两个原子会相互靠近.氧原子下方产生感应负电场,硅原子在上方生产感应正电场.当氧原子沿着水平方向与替代电场相同的频率及垂直方向靠近时,邻近的另一个氧原子会相对的生产排斥或者吸引的力量,使氧原子回到原来的空间位置.因此电场的力量与原子之间的力量会相互牵引,离子的位移或振动幅度取决于电场和石英的电偶极子之间的角度.电场的改变与水平方式的变换形成交互作用状态.在实际的三维石英晶振中,电场由涂覆在石英晶片表面上的电极提供,偶极子的取向可以通过石英棒的不同切割角度来决定.
石英晶体的压电特性
根据不同的应用领域以及不同的工作温度需求,所以产生不同的石英晶体板.例如AT-,BT-,CT-,DT-,NT-,GT…不同的切割板片.不同的切割方向的板片具有不同的弹性常数张量(elastic constant tensor), 不同的压电常数张量(piezoelectric constant tensor)及不同的介电常数张量(dielectric constant tensor). 这些张量在石英组件的设计及应用上展现了不同的振荡及温度特性. (图三)表现了在Z-plat石英结构上,几种不同方向的石英板片切割方式.
石英晶体的切割角度
大部份的石英晶体产品是用于电子线路上的参考频率基准或频率控制组件,所以,频率与工作环境温度的特性是一个很重要的参数.良好的频率与温度(frequeny versus temperature)特性也是选用石英做为频率组件的主要因素之一. 经过适当的设计与定义,石英晶体组件可以很容易的就满足到一百万分之一(parts per million, ppm)单位等级的频率误差范围.若以离散电路方式将LCR零件组成高频振荡线路,虽然也可以在小量生产规模达到所需要的参考频率信号误差在ppm或sub-ppm等级要求,可是这种方式无法满足产业要达到的量产规模.石英组件的频率对温度特性更是离散振荡线路无法简易达成的.在(图四) 中提供了数种不同的石英晶体切割角度的频率对温度特性曲线.
石英晶体的频率特性与温度特性
在各种不同种类的切割角度方式中, AT角度切割的石英芯片适用在数MHz到数佰MHz的频率范围,是石英芯片应用范围最广范及使用数量最多的一种切割应用方式. 在(图五)中, 从石英晶棒X-轴向的上视图, 可以看到对Z-轴向旋转约35度的AT 方向. 这在大量生产的技术上也是很好达成的一种作业方式.
石英晶体的切割方向
上图是以AT切割角度变动在厚度振动模态的频率对温度特性的展开图. 图中以常用的室温摄式25度作为相对零点, AT切割的最大优点是频率对温度变化为一元三次方曲线. 这个特性, 从(图六)中可以看到, 在相当宽广的温度范围下, AT切割的温度曲线的第一阶及第二阶常数为零, 第三阶的常数便决定了频率对温度的变化值.
切割晶体的温度频率特性变化
- 阅读(435)
相关搜索
热点聚焦
- 1时钟振荡器XO57CTECNA12M电信设备专用晶振
- 2汽车音响控制器专用晶振403C35D28M63636
- 3XCO时钟振荡器C04310-32.000-EXT-T-TR支持微控制器应用
- 4ABS07W-32.768KHZ-J-2-T音叉晶体可实现最佳的电路内性能
- 5402F24011CAR非常适合支持各种商业和工业应用
- 6无线模块专用微型ECS-240-8-36-TR晶体
- 7DSX321G晶体谐振器1N226000AA0G汽车电子控制板专用晶振
- 8lora模块低功耗温补晶振ECS-327TXO-33-TR
- 9ECS-250-12-33QZ-ADS-TR适合高冲击和高振动环境的理想选择
- 10ECS-200-20-20BM-TR紧凑型SMD晶体是物联网应用的理想选择