- [行业新闻]石英晶振Q-SC32S03220C5AAAF与Q-SC32S0322070AAAF权位之争2019年09月26日 21:36
有关于石英Q-SC32S03220C5AAAF晶振与Q-SC32S0322070AAAF权位之争。是什么原因引起SEIKO INSTRUMENTS INC晶体出现全国性短缺,Q-SC32S03220C5AAAF供货岌岌可危,电子工厂将何去何从.Q-SC32S0322070AAAF是否将要代替Q-SC32S03220C5AAAF晶振的存在.
我们先来回顾2018年电子行业都发生过哪些大事件。
1. 中央政治局集体学习人工智能
2. 习大大向2018世界VR产业大会致贺信,加速发展VR
3. 大力推动工业互联网
4. 加速5G的普及与建设
5. 三大电信运营商取消流量漫游费
6. 中内广播电视总台开播4K超清视频
7. 3D闪存技术创新
这一系列的大事件的发生,无疑标识着我们的生活不断的在进步,科技也不断的在发展,技术也是一年比一年更精湛。但不管什么电子产品的发展都是会离不开电路板上的那些晶体,电阻电容,芯片,集成电路等等更多的电子元器件产品。不管是国家需要发展哪些科技,或者是发展某一产品,随便的都可以导致产品的短缺以及价格暴涨。2018年32.768K系列的MC-146晶振与日本精工SSP-T7-F晶振都陷入缺货的状态,Q-SPT7P0327620C5GF晶振是精工得意产品之一。长长身躯以及亮黑的颜色使得Q-SPT7P0327620C5GF有着黑马之称。这颗Q-SPT7P0327620C5GF晶体主要应用于手机,穿戴式的智能产品,模块,以及微型计算机,时钟模块等。在智能穿戴产品的发展趋势下晶体频率元器件也开始“忙活”起来。夜以继日的工作只是为了能够更好的展示自己的能力。Q-SPT7P0327620C5GF可以承受零下40度的低温,更可在85摄氏度的高温下坚持正常的工作,以提供更好的优势展示在产品中,让你得到不一样的体验。
现在的普通家庭人手一量小汽车都已经成了标配,为了方便出行,也为了方便娶老婆。这样的观念一出,全中国14亿人口就算按一个家庭一辆车的话,那也至少有7亿的量。每到逢年过节的时候该出游的时候出游,该回家的时候回家,尤其是国庆春节,那高速路上可是堵着都能发慌。出来打几圈麻将都还不能挪半步。路上出现车祸导致行车缓慢这个是其一,另一个就是高速路上经过收费站的时候就会要堵上几圈,免收费的话速度就慢的出奇。终于,国家在今年终于有了新的行动。那就是全民使用ETC。对于有车一族的朋友来说ETC并不会陌生。这个政策一出全国的晶振厂家都忙的不可开交啊。一个ETC里面至少要放四颗晶振,全国性的开展ETC的生产工作,那工作量得有多大啊,随随便便都二三十个亿晶振需要交货生产。这一下子把整个市场的进口产品都给垄断了,尤其是石英晶振Q-SC32S03220C5AAAF与Q-SC32S0322070AAAF。要知道Q-SC32S03220C5AAAF是用在电表,时钟,蓝牙等产品上面用量是多大,现在房产发展的有声有色的当然也还是会离不开电表的存在,大部分都是搞成公寓房出租啥的,每间房都需要隔开单独安装一个电表,而一个电表里面至少得有3个32.768KHZ晶振的存在。这个用量是不会少于ETC的,但也不会像ETC这样急促。用量还是很大的。Q-SC32S03220C5AAAF晶振比较适用于高密度安装的SMD类型产品里。标准的32.768KHZ频率是成为电路板中存活的“心脏”。对于7PF的Q-SC32S0322070AAAF来讲,虽然现产量并达不到Q-SC32S03220C5AAAF这么高,现在因为ETC的增长使得Q-SC32S0322070AAAF的产量不断在增加。
我们来了解下石英晶振Q-SC32S03220C5AAAF与Q-SC32S0322070AAAF的参数有什么不同。只认准Q-SC32S03220C5AAAF的客户为什么可以转型再使用Q-SC32S0322070AAAF呢?
Q-SC32S03220C5AAAF规格表
Q-SC32S0322070AAAF规格表
一览无余3.2*1.5*0.8mm的尺寸,光溜平滑的表面看得出来都是以上等材料制作而成。可以在严骏的负40摄氏度的低温下正常工作,高出85摄氏度也依旧如初。精工晶振Q-SC32S03220C5AAAF凭借着自带12.5PF通用频率在电子世界中任意穿梭。而7PF电容的Q-SC32S0322070AAAF晶体虽然说并没有像Q-SC32S03220C5AAAF那么常用,但却一直在电子产品上默默无闻的付出着,一直在不断的改进自身的技术,把工作当成对自己的磨炼,一步一步的走向电子世界的顶端。不知道从什么时候开始Q-SC32S0322070AAAF的产量慢慢的给提升上去了,直至现在,在很缺货的时候依旧有很多客户一直在寻找着这颗料。因为Q-SC32S0322070AAAF的持续努力得到了回报,得到了大家的认可。
- 阅读(513)
- [晶振编码查询]1XTV19200CDB|DSA321SDA晶振|KDS晶振|株式会社大真空|VCTCXO晶振2019年09月06日 09:21
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV19200CDB|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDA Original code 原厂代码 1XTV19200CDB Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 19.2 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV19200CDB晶振产品尺寸图
1XTV19200CDB晶振产品电气表
关于1XTV19200CDB压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。

对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(142)
- [晶振编码查询]1XTV26000AAD|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月30日 08:39
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000AAD|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SCA Original code 原厂代码 1XTV26000AAD Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000AAD晶振产品尺寸图
1XTV26000AAD晶振产品电气表
关于1XTV26000AAD压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。

对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(132)
- [晶振编码查询]1XTV26000JBA|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月21日 09:02
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000JBA|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDM Original code 原厂代码 1XTV26000JBA Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
3.3V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000JBA晶振产品尺寸图
1XTV26000JBA晶振产品电气表
关于1XTV26000JBA压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。

对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(95)
- [晶振编码查询]1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器2019年08月20日 09:24
1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器
Model Name 型号 DSB221SDN晶振 Original code 原厂代码 1XXB26000MAA Device Name 产品名称系列 TCXO(温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
1.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.8mm 1XXB26000MAA晶振产品尺寸图
1XXB26000MAA晶振产品电气表
关于1XXB26000MAA温补晶振产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。

对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(161)
- [行业新闻]关于石英晶体的驱动电平2019年08月16日 10:57
驱动电平是振荡期间提供给晶体单元的功率,并使用下面的公式计算。
DL(μW)= R L(Ω)x i 2(mA)
DL:驱动电平
RL:负载下石英晶体谐振器的等效电阻
i:流经晶体谐振器的电流值(有效值)
每个晶体单元都有一个驱动电平标准,并保证驱动电平的上限。关于超过上限的问题是由于与寄生模式的耦合引起的异常振荡(对振荡频率的影响)。以下解释了这个问题。
AT切割晶体单元使用厚度剪切模式作为主振荡模式,但还有许多其他寄生模式(弯曲振动,平面滑动振动等)。图1显示了AT切割晶体单元的振动模式。
这些寄生模式的频率可以与特定温度下主振动的振荡模式的频率组合,从而影响振荡频率。
当驱动电平对于规范来说太高时,杂散和主振动可能会耦合。图2显示了当驱动电平正常(驱动电平在标准范围内)和驱动电平过高(驱动电平超出标准范围)时,振荡器频率温度特性如何不同。
当驱动电平正常时,如图2(a)所示绘制平滑的三次曲线。但是,当驱动电平过大时,振荡频率在特定的温度范围内突然变化,如图2(b)所示。现象(称为活动倾向)更有可能出现。
在电路研究中,我们提出了在驱动电平规范范围内的电路常数,以防止活动下降。
- 阅读(440)
- [晶振编码查询]1C208000BC0U|KDS晶振|株式会社大真空|陶瓷面晶体2019年07月29日 09:55
1C208000BC0U|KDS晶振|株式会社大真空|陶瓷面晶体
Model Name 型号 DSX321G晶振 Original code 原厂代码 1C208000BC0U Device Name 产品名称系列 CRYSTAL(石英晶体) Nominal Frequency 标称频率 8.000000 MHZ LOAD CAPACITANCE(CL) 负载电容
12.0PF DRIVE LEVEL 驱动电平
10 uW
FREQUENCY TOLERANCE 频率偏差
20ppm Operating Temperature Range 工作温度范围
-30~+85℃ Storage temperature 储存温度
-40~+85℃ SHUNT CAPACITANCE(C0) 并联电容
2.0pF max FREQUENCY CHARACTERISTICS OVER频率特性
30ppm INSULATION RESISTANCE 绝缘电阻
500 Mohms min.at 100v DC OVERTONE ORDER 泛音顺序
基本
SIZE 尺寸 3.2*2.5*0.85mm DIMENSIONS 尺寸外型图
Dimensions of embossed carrier tape 压花载带尺寸图
Dimensions of tape reel 卷尺尺寸图
- 阅读(245)
- [技术支持]陶瓷谐振器的共振原理2019年07月23日 16:11
等效电路常数:图1.2显示了陶瓷谐振器的符号。端子间的阻抗和相位特性如图1.5所示。该图说明陶瓷谐振器在提供最小阻抗的频率fr(谐振频率)和提供最大阻抗的频率fa(反谐振频率)之间的频率范围内变为电感性的。它在其他频率范围内变为电容。这意味着双端子谐振器的机械振荡可以用等效电路代替,该等效电路由串联和并联谐振电路的组合构成,其中包括电感器L,电容器C和电阻器R.在谐振频率附近,等效电路可以表示如图1.4所示。
fr和f a频率由压电陶瓷材料及其物理参数决定。等效电路常数可以从以下公式确定:
考虑到fr≤f≤fa的有限频率范围,阻抗给出为Z = R e + jwL e(Le≤= 0),如图1.5所示。 陶瓷谐振器应当作为具有损耗R e(Ω)的电感器L e(H)操作。
图1.1显示了陶瓷谐振器和石英晶体谐振器之间等效电路常数的比较。 注意,电容和Q m存在很大差异,这导致实际操作时振荡条件的差异。 附录中的表格显示了每种陶瓷谐振器的等效电路常数的标准值。
除了期望的振荡模式之外,存在用于其他振荡模式的高次谐波。 存在这些其他振荡模式是因为陶瓷谐振器使用机械共振。 图1.6显示了这些特征。
基本振荡电路
通常,振荡电路可分为以下三种类型:
1.积极的反馈
2.负电阻元件
3.在陶瓷谐振器,石英晶体谐振器和LC振荡器的情况下,传输时间或相位的延迟,正反馈是首选电路。
在使用LC的正反馈振荡电路中,通常使用Colpitts和Hartley的调谐型反耦合振荡电路。 见图1.7。
在图1中。 在图7中,使用晶体管,它是最基本的放大器。
振荡频率与Colpitts电路中由L,C L1和C L2组成的电路的谐振频率大致相同,或者由Hartley电路中的L 1,L 2和C组成。 这些频率可以用下面的公式表示。
在陶瓷谐振器振荡器中,利用陶瓷谐振器代替电感器,利用谐振器在谐振和反谐振频率之间变为电感的事实。 最常用的电路是Colpitts电路。
这些振荡电路的工作原理如图2.1所示。 满足以下条件时发生振荡。
环路增益:G =α•β≥1
相位量:φT=φ1+φ2= 360°•n(n = 1,2,...)
在Colpitts电路中,使用φ1= 180°的反转,并且在反馈电路中用L和C反转φ2= 180°。 用陶瓷谐振器的操作可以认为是相同的。
应用
典型的振荡电路:陶瓷谐振器最常见的振荡器电路是Colpitts电路。电路的设计随应用和要使用的IC等而变化。尽管电路的基本配置与晶体控制振荡器的基本配置相同,但机械Q的差异是由电路常数的差异引起的。一些典型的例子如下。
设计考虑因素:使用逆变器门将数字IC配置为振荡电路变得越来越普遍。下页的图3.1显示了带CMOS反相器的基本振荡电路的配置。
INV.1用作振荡电路的反相放大器。 INV.2用作波形整形器,也用作输出的缓冲器。
反馈电阻R f在逆变器周围提供负反馈,以便在通电时振荡开始。
如果R f的值太大而输入逆变器的绝缘电阻很低,则由于环路增益的损失,振荡将停止。而且,如果R f太大,则可以将来自其他电路的噪声引入振荡电路。显然,如果R f太小,则环路增益会降低。 1MΩ的R f通常与陶瓷谐振器一起使用。
阻尼电阻Rd具有以下功能,但有时省略。它使逆变器和反馈电路之间的耦合松动;从而减小逆变器输出侧的负载。此外,反馈电路的相位稳定。它还提供了一种降低高频增益的方法,从而防止了寄生振荡的可能性。
负载电容:负载电容C L1和C L2提供180°的相位滞后。应根据应用,使用的IC和频率正确选择这些值。如果C L1和C L2的值低于必要值,则高频环路增益会增加,从而增加了寄生振荡的可能性。这特别有可能在厚度振动模式所在的4-5MHz附近。
该电路中的振荡频率(f OSC)大致由下式表示。
其中,f r:陶瓷谐振器的谐振频率。
C1:陶瓷谐振器的等效串联电容。
C0:陶瓷谐振器的等效并联电容。
C L = C L1•C L2 / C L1 + C L2
这清楚地表明振荡频率受负载电容的影响。当需要对振荡频率的严格公差时,应注意定义其值。
CMOS反相器:CMOS反相器可用作反相放大器; 4069 CMOS组的单级型最有用。由于增益过大,环形振荡或CR振荡是使用三级缓冲型逆变器(如4049组)时的典型问题。 ECS采用RCA CD4O69UBE作为CMOS标准电路,如图3.2所示。
HCMOS逆变器电路:最近,高速CMOS(HCMOS)越来越多地用于允许微处理器的高速和低功耗的电路。
HCMOS逆变器有两种类型:非缓冲74HCU系列和带缓冲器的74HC系列。 74HCU系统是陶瓷谐振器的最佳选择。见图3.3
TTL逆变器电路:由于阻抗匹配,负载电容C L1和C L2的值应大于CMOS的值。此外,反馈电阻R f应小至几KΩ。注意,需要偏置电阻R d来正确确定DC工作点。
频率相关:振荡器电路如图所示
以下页面是ECS标准测试电路。这些电路中使用的逆变器被广泛接受为工业标准,因为它们的特性代表了同一系列(CMOS / HCMOS / TTL)中微处理器中的特性。当然,应用将使用不同的IC,并且可以预期,振荡器电路特性将因IC而异。
通常,这种变化可以忽略不计,并且可以简单地通过将处理器分类为CMOS,HCMOS或TTL来选择陶瓷谐振器部件号。
鉴于标准ECS陶瓷谐振器在下页中对测试电路进行100%频率分类,因此将标准电路的振荡频率与客户指定电路的振荡频率相关联相对容易。
例如,如果使用的微处理器是摩托罗拉6805,频率为4MHz,那么正确的ECS部件号将是ZTA4.OMG(频率分类到CD4O69UBE CMOS测试电路)。电路参数应选择如下:
通过实际设置该电路以及下面图3.1所示的标准测试电路,可以确定使用带有6805处理器的ZTA4.OMG时可以预期的平均偏移。 实际数据如下所示:
根据这些数据,可以预测标准ZTA4.00MG谐振器的频率偏离原始的4.00MHz±0.5%初始容差约+ 0.06%。 这当然是一个可以忽略不计的转变,不会以任何方式影响电路性能。
通过充分利用前面提到的特征,陶瓷谐振器与各种IC组合在一起被广泛应用。以下是一些实际应用示例。
微处理器的应用:陶瓷谐振器是各种微处理器的最佳稳定振荡元件:4位,8位和16位。由于微处理器参考时钟所需的一般频率容差为±2% - 3%,因此标准单元满足此要求。向您的ECS或LSI制造商询问电路常数,因为它们随频率和使用的LSI电路而变化。图A显示了具有4位微处理器的应用程序,图B显示了具有8位微处理器的应用程序。
遥控器IC:遥控器越来越成为一种常见功能。振荡频率通常为400-500 KHz,455KHz是最受欢迎的。该455KHz被载波信号发生器分频,从而产生大约38KHz的载波。
VCO(压控振荡器)电路:VCO电路用于电视和音频设备,因为信号需要与广播电台发送的导频信号同步处理。最初使用振荡电路,例如LC和RC;然而,现在使用陶瓷谐振器,因为它们不需要调整并且具有优于旧型电路的稳定性。用于VCO应用的谐振器需要具有宽的可变频率
其他:除上述用途外,陶瓷谐振器广泛用于IC用于语音合成和时钟生成。对于一般的定时控制应用,振荡频率通常由用户根据IC制造商推荐的工作频率范围选择。用给定的IC选择这个频率将决定什么电路值和哪个陶瓷谐振器是合适的。选择陶瓷谐振器部件号时,请联系您当地的ECS销售代表。
如前所述,陶瓷谐振器有许多应用。一些更具特定应用的振荡器电路要求为该应用和IC开发独特的陶瓷谐振器。
振荡上升时间
振荡上升时间是指在激活IC的电源时振荡从瞬态区域发展到稳定区域的时间。使用陶瓷谐振器时,它定义为在稳定条件下达到振荡电平的90%的时间如图6.1所示。
上升时间主要是振荡电路设计的函数。通常,较小的负载电容,较高频率的陶瓷谐振器和较小尺寸的陶瓷谐振器将导致较快的上升时间。随着谐振器的电容减小,负载电容的影响变得更明显。图6.2显示了对负载电容(C L)和电源电压的上升时间的实际测量。值得注意的是,陶瓷谐振器的上升时间比石英晶体快一到二十倍。 (这一点在图6.3中用图解说明)
启动电压:启动电压是指振荡电路可以工作的最小电源电压。所有电路元件都会影响启动电压。它主要取决于IC的特性。图6.4示出了相对于负载电容的起始电压特性的实际测量的示例。
陶瓷共振器振荡特性
下面描述基本电路中振荡的一般特性。有关特定类型的IC和LSI的振荡特性,请与泰河电子联系。
在-20°C至+ 80°C的范围内,温度变化的稳定性为±0.3至0.5%,尽管根据陶瓷材料的不同而略有不同。负载电容(C L1,C L2)对振荡频率的影响相对较高,可以根据f OSC的公式计算.ffC。由于电容,变化约±0.1%
工作电压范围内的偏差为±0.1%。 f OSC。也随IC的特性而变化。
电源电压变化特性:有关给定振荡频率的实际稳定性测量示例,请参见下面的图1。
振荡水平:以下是振荡水平对温度,电源电压和负载电容(C L1,C L2)的实际测量示例。振荡水平要求在很宽的温度范围内保持稳定,并且温度特性应尽可能平坦。除非IC具有内部恒定电压电源,否则这种变化与电源电压呈线性关系。
- 阅读(647)
- [晶振编码查询]7A0800LCSC-AHQ2G晶振2019年07月18日 09:01
制造商 台湾TXC 产地 台湾 产品编号 7A0800LCSC-AHQ2G 频率 8.000000MHZ
负载 10PF 温度范围 -40~+85度 频率偏差 25PPM
封装
陶瓷贴片两脚 尺寸 5.0*3.2*1.25mm
- 阅读(230)
- [技术支持]在烤箱控制晶体振荡器中的老化与回收2019年06月24日 15:16
石英晶体振荡器广泛用作各种电子系统中的频率和时间标准。虽然石英晶体振荡器非常适合于任务,但在要求苛刻的应用中的最佳性能,如同任何精密器件一样,需要深入了解器件特质。
衰老是振荡器的长期频率漂移。虽然精心设计和制造可以最大限度地减少运输时的老化,但振荡器的使用寿命会持续老化,并受到断电存储的环境和持续时间的影响。本文重点介绍了造成老化的物理过程,并解释了为何在进行断电存储后,在振荡器频率调整之前强烈建议重新稳定时间。
老龄化有两个基本原因。首先,石英晶体谐振器的频率受电极质量的强烈影响。电极或石英毛坯表面的污染增加了谐振器质量,从而降低了谐振频率。水蒸气是这种污染的罪魁祸首,尽管氧气和碳氢化合物也会引起问题。用于将谐振器安装在其外壳中的导电粘合剂的除气也是一个因素。结晶石英和金属电极都是亚微观尺度的多孔,有大量的小空腔,含有污染物。污染始终存在于某种程度,但生产过程如臭氧清洗,高温真空烘烤,以及使用硬真空可以将污染影响降至几乎可以忽略的程度。
如果污染物保留在原位,污染就不会成为问题。不幸的是,新晶体上的污染,特别是安装在高温下操作的恒温晶体振荡器中的晶体,在蒸发,吸附,冷凝和机械加速的影响下移动。结果,新的振荡器迅速老化,直到污染物运动稳定。
机械应力是振荡器老化的第二个原因。晶体是原子的有序晶格,其形状与原子间距一起决定了晶体的物理性质,如介电常数和弹性。许多这些特性影响共振频率。机械应力使原子晶格变形,稍微改变原子间距,从而稍微改变晶体的物理性质。如果受到应力的晶格恰好是石英晶体谐振器,则结果是谐振频率略有变化。因此,AT切割谐振器暴露于机械应力移位频率。双旋转晶体(例如IT切割或SC切割)部分地受到应力补偿,并且受到应力的影响较小。因此,双重旋转切割的再稳定时间较短,但这些谐振器制造起来要困难得多,并且比普通的AT切割谐振器更昂贵。
石英晶体谐振器中的应力有很多来源;来自安装夹的弹簧作用的安装应力,导电粘合剂在设定时的收缩,来自制造期间的切割和研磨操作的残余应力以及差异的热膨胀和收缩。最后一个因素在烘箱振荡器中特别有意义,因为每次施加功率时晶体从室温加热到约80℃,并且因为晶体石英中的热膨胀系数在每个轴上是不同的。
由于石英传导热量很差,热梯度很陡并且消散得很慢。当谐振器的边缘与安装夹接触时,过热的AT切割谐振器在预热期间会受到强烈的应力引起的频率瞬变。比中心。这个瞬态在图中可见,因为在开启后4到5分钟出现了尖锐的频率下冲。刚刚开启后新振荡器中的残余应力达到最大值,在操作的前几天缓慢放松,直到达到平衡条件。
对于新的振荡器,来自污染物再分配和应力松弛的频率变化高达每天十亿分之几。 VECTRON晶振的标准做法是燃烧或老化新的振荡器,同时持续监测频率,直到日常老化速率稳定。所需的时间取决于振荡器频率和晶体切割以及指定的老化速率。典型的老化持续时间从不到一周到几周不等。
当一个新的“老化”振荡器关闭时会发生什么?当冷却时,静电振荡器重新获得机械应力,应力的大小是炉温和环境温度之差的函数。尽管在较低温度下应力松弛率大大降低,但这种应力最终会消失。
当振荡器关闭时,污染物开始再次向新的平衡状态移动。如前所述,在较低温度下重新分配的速度要小得多。如果断电时间很短,并且存储温度适中,则振荡器将恢复到接近于在短暂预热期后在装运时测量的老化速率。实际频率接近 - 但不相同 - 由于滞后并且因为在断电期间老化持续,但不一定是相同的速率。
延长的断电间隔,或(根据对受试者的一些参考)在断电间隔期间暴露于极端温度允许更大程度的应力松弛和污染物重新分布。在这种情况下,在原始生产老化期间获得的一些老化稳定性丢失。因此,当重新施加功率时,需要更长的再稳定时间来达到先前的老化速率。重建期间有所不同。 24小时后对三次泛音AT切割恒温振荡器的再稳定化表示非应力补偿晶体的非常好的性能。甚至少量晶体污染的存在将显着延长再稳定期。
这在实践中意味着什么?首先,如果可能的话,应该持续为恒温振荡器供电。如果电源中断是不可避免的,请注意振荡器将比正常预热需要一些时间才能恢复到先前的老化速率,并且由于老化和滞后,不太可能返回到完全相同的频率。 AT切割谐振器的迟滞不太可能比10-8中的几个部分好得多。重新稳定期间的频率调整不是一个好主意。凭借其设计精密恒温振荡器的丰富经验,Vectron晶振能够协助确定适当的再稳定期,特别是在断电期超过几天且需要更长的再稳定期的情况下。
- 阅读(287)
- [行业新闻]KVG晶振公司的历史2019年05月28日 10:50
石英晶体振荡器是用于生产振动的电路,由于振荡器的频率决定元件所包含的一个石英晶体振荡器,石英晶体振荡器可说服它们的频率精度和频率稳定性。实际上,这些电路经常被用作无线电,处理器和微控制的时钟。此外,大家可以在石英表中找到它们。因此石英和石英晶体振荡器被认为是数据传输和电信中频率控制的最重要组成部分,这也并不奇怪,因为它们的主要优点包括高谐振质量,大量振荡器选择和高频率性。
于对用于测量设备,卫星导航设备或者电信设备而言,由于价格敏感,振荡器的要注主要取决于频率,稳定性,外壳类型,输出信号和温度范围。例如,仪表,卫星导航设备或电信设备等专业应用对内置振荡器有更高的要求。包括具有良好的稳定性。低相位噪声和长寿命。为了实现这一点,所使用的石英还必须具有改进的老化性能,以实现相应的整体性能。为了最小化初始老化效应,所有振荡器都需要经历所谓的预老化过程,因此,只有在运行了几天后才能达到最终的稳定性。
KVG QUARTZ CRYSTAL TECHNOLOGY GMBH公司成立于1946年.在第二次世界大战结束后不久,物理学家库尔特·克林林创建了KVG公司. 不久后KVG公司就迁往内卡比绍夫斯海姆, 也就是现在KVG总公司所在地. 在1996年,KVG成为美国Dover有限公司在欧洲的晶体与晶体振荡器产品的合作伙伴。 1997年,晶体陶瓷在OCXOs和精准晶体的生产中被实际使用, 从而闻名世界.
从2002年起,KVG再次成为独立公司. 新的公司领导者曼弗雷德·克利姆和格尔德克劳斯科夫先生都是在这行业具有多年的经验.
以下是KVG晶振公司的发展历史。
KVG公司的发展史展现了晶体产品生产技术持续更新发展的过程:
· 1963 KVG使用合成晶体材料.
· 1964 研发和生产晶体滤波器.
· 1968 生产温度补偿晶振TCXOs.
· 1970 晶体生产中的直接溅镀.
· 1971 整块晶体滤波器的生产.
· 1972 生产凸面性晶体晶片.
· 1974 引进射线测量技术用于切割面角度的测定.
· 1979 以电脑为后台的晶体温度测定.
· 1981 以计算机为支持的TCXO的生产.
· 1983 KVG研发基于晶体的传感器和研发OCXOs.
· 1987 基于计算机控制的质量管理体系.
· 1988 SMD组件的自动装备机.
· 1993 622.08MHz的VCXOs.
· 1994 建立产品线,以HFF为晶体基座,最大振动频率达到200MHz.
· 1994 用SC-晶体生产OCXOs.
· 1995 使用镭射技术进行晶振的频率协调.
· 1997 生产 SMD OCXOs系列的 OCXO-6000.
· 1998 生产ASIC-TCXOs.
· 1999 用HFF晶体生产VCXOs.
· 2000 建立新生产,用于生产精准晶体的产品系列.
· 2002 KVG重塑独立实体.
· 2003 在晶体振荡器中使用电子谐频.
· 2005 设计出低相噪OCXO.
· 2007 设计出航天级的晶体.
· 2008 设计出航天级的晶体振荡器.
· 2009 建成新的生产设备.
· 2010 KVG重组了晶体和振荡器生产工厂.
· 2010 设计出抗冲击振动 OCXOs.
· 2011 空间晶体得到欧洲航天局的资格认证.
· 2013 以晶体振荡器XO和VCXO成为欧洲航天局的资格供应商.
· 2014 采用机械阻尼OCXO模块.
· 2015 设计出超低相躁RF-OCXO和抗冲击振动OCXO.
在恒温晶振的领域内的新设计,如提高抗冲击振动技术,新的RF TCXO和OCXO,使得在晶体和晶体振荡器的领域再次设定了标准.
- 阅读(270)
- [行业新闻]MtronPTI公司的发源史2019年05月27日 11:24
凭借1965年雷达用精密晶体滤波器的基础,Mtronpti设计和制造了用于高可靠性和恶劣环境应用中的数据定时和射频频谱控制的射频和微波解决方案。Mtronpti成立于2004年,由M-tron Industries,Inc.收购Piezo Technology,Inc.,是LGL Group,Inc.的全资子公司。
在航空航天和国防市场,Mtronpti的数字调谐滤波器支持在存在电磁干扰的情况下进行安全通信。低漂移、高精度振荡器为地面、车辆、空中和卫星通信以及电子对抗提供可靠的频率锁定。抗振动和冲击的水晶钟使雷达图像更加清晰,并有助于监控商用飞机发动机的性能。
对于互联网通信,mtronpti晶振公司具有非常低的噪声和包同步时钟有助于增加带宽,防止蜂窝基站、micro和femto蜂窝以及Wi-Fi接入点的数据丢失。毫米波滤波器确保公司和电信的点对点链接保持无误。
在实验室工作台或消费电子产品生产测试台上,mtronpti超低噪声频率基准振荡器确保了准确的测量。当公共安全至关重要时,mtronpti宽温度范围/防水腔过滤器确保可靠的无线电通信。
卫星链路、相控阵雷达和抗IED干扰机使用mtronpti射频功率放大器将信号增强到天线。
Mtronpti晶振公司位于佛罗里达州奥兰多,在美国和印度制造业,在垂直方向上与基础材料科学、设计和制造方面的丰富经验相结合。凭借AS9100 C版和ISO 9001:2008全球认证、销售和支持,作为公认的服务领导者,MTronpti通过分销合作伙伴支持思科、雷神、爱立信、哈里斯、罗克韦尔柯林斯、联合技术航空和近2000家小型客户等主要原始设备制造商的创新和可靠性
LGL集团公司的工程和设计起源可以追溯到上个世纪初。 1917年,LGL的前身林奇玻璃机械公司成立,并在二十年代末成为玻璃成型机械的成功制造商。该公司后来更名为林奇公司,并于1928年根据印第安纳州法律注册成立。 1946年,林奇被列入“纽约路边交易所”,这是纽约证券交易所MKT的前身。该公司在精密工程,制造和服务领域拥有和经营各种业务的历史悠久。
LGL集团公司(以下简称“公司”)于2007年根据特拉华州法律重新注册,并作为控股公司,其子公司从事定制设计,高度工程化的电子元件制造。该公司的办公室位于佛罗里达州奥兰多市沙德路2525号,邮编32804。公司的普通股在纽约证券交易所股票代码:MKT上以股票代码“LGL”进行交易。
公司通过其主要子公司M-tron Industries,Inc.运营,包括M-tron Industries,Ltd.(“MTRON”)的运营,以及MTRON的子公司Piezo Technology,Inc.和Piezo Technology India Private Ltd.(合称“PTI”)。2004年10月,MTRON和PTI合并为一家公司,拥有业内最广泛的产品组合之一。MTRONPIT和PTI的联合业务被称为“MTRONPIT”。MTRONPIT在奥兰多、佛罗里达、扬克顿、南达科他州和印度诺伊达都有业务。此外,MtronPTI在香港和中国的上海设有销售办事处。
Mtron Industries,Inc.(“MTRON”)始建于1965年,原名为Mechtronics,Industries,Inc.。此后不久,该公司正式更名为M-tron Industries,Inc.。早期,MTRON的主要业务是为CB无线电市场制造晶振。当20世纪70年代末技术发生变化时,MTRON也发生了变化。营销方式的改变和产品的持续发展为公司提供了新的生活。MTRON被称为高质量、高可靠性晶体、振荡器的供应商,在某种程度上,VCXO(压电控制晶振)和TCXO(温度补偿晶振)产品将用于诸如电信基础设施(用于制造电话系统)以及后来的互联网功能等应用。1976年,M-tron Industries,Inc.被收购。2002年,MTRON收购了伊利诺伊州富兰克林公园的Champion Technologies,Inc.的资产。在20世纪80年代中期,Champion是摩托罗拉的子公司。这次收购通过扩大产品供应和客户群,帮助MTRON从2001年和2002年的电信市场崩溃中更快地复苏。
1965年,几乎在MTRON成立的同时,成立了另一家公司,名为Piezo Technology,Inc.。PTI的成立是为了设计和建造用于所有类型设备的晶体滤波器,其中某些类型的噪声需要从电路中过滤出来。多年来,PTI在业务和产品方面都有所发展,包括LC(集总元件)滤波器、TCXO和OCXO(恒温晶体振荡器)产品。PTI的主要市场是军事、航空电子和仪器仪表。1995年,PTI在印度开设了生产基地,2004年M-tron Industries,Inc.收购了Piezo Technology,Inc.。
LGL的业务发展战略主要集中在通过MTRONPTI晶振通过有机增长、扩展到新的地理市场细分市场以及通过其他战略机会扩展现有业务。MtronPTI目前在全球范围内占有一席之地,为大多数需要精确定时和过滤产品的主要市场提供服务。公司的目标细分市场包括高端电信、军事、仪器、空间和航空电子设备(简称“MISA”)。
- 阅读(516)
- [行业新闻]ABRACON晶振公司简介2019年05月05日 16:23
关于ABRACON晶振公司你了解多少呢?ABRACON晶振公司成立于1992年,总部位于德克萨斯州,是全球领先的无源晶振与机电定时,同步,电源连接和射频解决方案制造商。ABRACON晶振公司提供多种石英晶体和晶体振荡器,MEMS振荡器,实时时钟(RTC),蓝牙模块,陶瓷谐振器,SAW滤波器和谐振器,电源和RF电感器,变压器,电路保护元件和RF天线以及无线充电线圈等产品。ABRACON晶振公司规模庞大,致力于像全球供应优质的电子元器件产品。并且,ABRACON晶振公司已经通过了ISO9001-2008认证,在德克萨斯州拥有设计和应用工程资源,并在德克萨斯州,加利福尼亚州,中国,台湾,新加坡,苏格兰,以色列,匈牙利,英国和德国等地设有销售办事处。并通过网络向全球分销提供货。
ABRACON CRYSTAL公司为多个市场提供组件,包括物联网,工业控制,汽车,运输,通信,照明,消费以及其它设备,这些市场都需要不断的创新产品,并且,ABRACON晶振公司在电源连接,射频和定时技术方面都会推出新产品,并提供更先进的技术服务。
最近ABRACON晶振公司发布了业界领先的LOT系列石英晶振,主要用于节能MCU和RF芯片组,功率优化的119fs超低抖动AX7系列时钟晶体振荡器,产品应用比较广泛,或优化芯片性能,具有高效率的性能。为物联网协议和ARJM11 RJ45设计的贴片以及外部天线,集成磁性支持10 / 100Base-T,1000Base-T,2.5GBase-T和5GBase-T。ABRACON晶振公司在过去的12个月内发布了超过20’000个新零件号。ABRACON晶振公司拥有强大的销售服务以及技术支持团队.
- 阅读(4613)
- [技术支持]石英晶振系列解决方案2019年04月29日 15:17
从早期的无线电到雷达,以及现在的数字计算,每个电路都需要一个时钟或心跳来指导其功能。时序控制从低功率到高精度的各种应用中的处理速率,数据连接和RF传输频带。时间已成为一个多元化的工程领域。考虑到可以设计时钟电路的多种方式以及每年引入该行业的许多进步,工程师应该定期重新考虑其时序考虑因素。以下是基本计时设备列表以及使用它们的最佳时间。
1.LC谐振器
LC谐振器是最简单和常用的定时电路,由放大器,电感器和电容器组成。主要优点包括低成本和易于集成,特别是在高频率下。然而,它不是非常准确,并且随温度变化很大。这种可变性提供了一个额外的属性:宽拉范围。因此,在开发小型或高度集成的压控振荡器(VCO)时,LC是首选的谐振器。这些振荡器在PCB或片上设计用于跟踪或锁定其他频率。由于温度可以使频率+/- 10,000 ppm或更高,因此LC不够精确,无法单独运行。
2.陶瓷谐振器
陶瓷谐振器的主要优点是成本。如果您正在寻找最低成本和稳定的解决方案,那么这项技术可以帮助您实现这一目标。不要指望在整个温度范围内稳定性小于+/- 1000ppm。该谐振器成本低,但不能用于精确或甚至部分精确的定时。玩具,低端设备和低端MCU应用程序等通用应用程序可以摆脱这种不精确的程度。如果您需要更高的精度,其他谐振器将帮助您。
3.石英晶体
石英晶体因其自补偿温度稳定性,出色的初始精度和适中的成本而成为时间之王。作为谐振器,它具有高Q值,可实现极低的在线噪声。批量生产已经对这些设备的精度和成本进行了微调,因此价格适中的晶体现在可以实现+/- 20ppm至+/- 50ppm的总体精度。它具有出色的稳定性,是当今许多连接协议的理想时间基础,从Wi-Fi,Zigbee和蓝牙到汽车LIN / CAN,以太网,UART和工业应用。定时MCU和使用石英晶体的处理器提供的精度可以满足常见的连接协议。但是,有些协议需要更高的性能。晶体的精度可以提高。
4.石英晶体振荡器(XO)
石英晶体振荡器集成了振荡器芯片和石英晶体。它提供了石英的准确性和低噪声优势,但降低了电路板走线引起的可变性。在某些情况下,振荡器芯片还将基本石英频率乘以应用所需的频率。在非常低噪声的系统中使用XO而不是裸石英晶体是必要的,例如高速通信,光学互连,光学模块,测试和测量以及先进的RF应用。XO以高频率提供低噪声,这对于使用普通晶体来说是难以实现的。高性能系统中使用的顶级频率如100MHz,156.25MHz或312.5MHz需要使用XO提供的差分LVPECL,LVDS,HCSL或CML信号进行调理。
5.温度补偿晶振(TCXO)
虽然XO提供缓冲和频率转换,但它们跟踪石英晶体毛坯的精度。若干通信和电信应用,例如点对点RF,GNSS / GPS,移动电话,LPWAN网关和其他精密RF连接系统,需要在整个温度范围内具有+/- 0.5ppm至+/- 2.5ppm的频率稳定性。Stratum III需要+/- 0.28ppm的稳定性。裸露的石英不够稳定,不易达到低于10ppm的稳定性。TCXO经历了一个制造流程,可以测量和校准其频率偏差。明显的缺点是成本。请记住,没有什么比终端系统中不可操作的数据链路更昂贵。
6.烤箱控制的晶体振荡器(OCXO)
OCXO可以达到几乎不可想象的精度水平+/- 0.1ppm至0.1ppb或更高的温度。TCXO技术不仅使用温度校准。OCXO通过添加二阶控制 - 石英毛坯的温度来实现稳定性。在启动时,OCXO将石英毛坯加热到比环境温度高约10度,并将温度控制在该水平,从而最大限度地减少温度扰动。在许多情况下,OCXO还具有机械防护冲击和振动功能,使终端系统能够实现最大时钟精度以满足要求。与军用和雷达相关的许多应用以及用于移动电话的基站收发信台(BTS)需要这种精确度。快速移动车辆中的先进高精度GPS也需要高精度。
7.微电子机械系统(MEMS)
MEMS技术与石英并行发展。MEMS基于硅而非石英晶体,具有小型化和抗冲击和振动的优点。由于与MEMS谐振器相关的复杂性,MEMS的主要缺点是成本。虽然它可以用于晶体,XO和TCXO涵盖的各种应用中,但是当需要高耐久性时,MEMS是最佳的。此外,在尺寸为1.6 x 1.2mm的超小尺寸下,MEMS与晶体竞争非常激烈。可穿戴设备,无线充电板,工业控制,机器人,无人机和AR / VR等应用可以充分利用MEMS的耐用性和尺寸。
- 阅读(220)
- [行业新闻]村田新产品MEMS谐振器应用指南2019年04月20日 09:04
日本村田新研发出一款MEMS谐振器,尺寸仅有0.9*0.6*0.3mm。实现了现石英晶体谐振器达不到超小尺寸,并且低ESR特性的产品。MEMS谐振器的诞生可代替许多石英晶体谐振器。有很多人就想问了什么是MEMS谐振器?它跟振荡器有什么区别?MEMS谐振器有哪些特点?工作原理有哪些?使用都需要注意一些什么问题?等等一大串的问题就随之而来了。
那么我们将一一把问题给大家回复。
首先,大家肯定是会对日本村田陶瓷晶振制作所研发出的产品有些疑问,什么是MEMS呢?其实MEMS指的是微机电系统(Micro Mlectro Mechanical Systems),这种装置运用了半导体生产工艺技术,具有三维微细结构。除了面对MEMS谐振器还有一种是振荡器,MEMS振荡器跟其它普通石英晶体振荡器是一样的,将振荡用电路也谐振器融为一体的装置。可用科尔皮兹振荡电路之类的普通振荡电路驱动。
WMRAG32K76CS1C00R0谐振器是村田MEMS技术的代表作品。该产品具有体极柢的ESR特性以及极小尺寸封装,这个是目前石英晶体谐振器无法实现的突破。极小的尺寸有助于减小安装面积,通过优化IC增益,实现了低ESR的MEMS谐振器,降低了功耗。也可用于回流焊接,引线键合和传递模型。WMRAG32K76CS1C00R0谐振器具有晶体该有的特性,32.768KHZ标频以及20PPM标准稳定偏差。可在-30~+85度下正常工作。驱动电平在0.2μW以内。当您考虑置换晶体的时候,要注意晶体谐振器和MEMS谐振器的负载电容量值不同。
并且要知道MEMS谐振器与普通石英晶体谐振器的区别。
- 阅读(254)
- [技术支持]What is frequency at load capacitance?2019年04月16日 10:07
1. Introduction
When ordering crystals for oscillators that are to operate at a frequency f, e.g. 32.768 kHz or 20 MHz, it is usually not sufficient to specify the frequency of operation alone. While the crystals will oscillate at a frequency near their series resonant frequency, the actual frequency of oscillation is usually slightly different from this frequency (being slightly higher in “parallel resonant circuits”).1
So, suppose you have a crystal oscillator circuit and you want to purchase crystals such that when placed in this circuit the oscillation frequency is f. What do you need to tell the crystal manufacturer to accomplish this? Do you need to send a schematic of the oscillator design with all the associated details of its design, e.g. choice of capacitors, resistors, active elements, and strays associated with the layout? Fortunately, the answer is no. In addition to the frequency f, all that is needed is a single number, the load capacitance CL .
2. What is CL ?
Suppose your crystal oscillator operates at the desired frequency f. At that frequency, the crystal has complex impedance Z, and for the purposes of frequency of operation, this is the only property of the crystal that matters. Therefore, to make your oscillator operate at the frequency f, you need crystals that have impedance Z at the frequency f. So, at worst, all you need to specify is a single complex number Z = R+jX. In fact, it is even simpler than this.
While in principal one should specify the crystal resistance R at the frequency f, usually the crystal-to- crystal variation in R and the oscillator’s sensitivity to this variation are sufficiently low that a specification of R is not necessary. This is not to say that the crystal resistance has no effect; it does. We shall discuss this further in Section 4.
So, that leaves a single value to specify: The crystal reactance X at f. So, one could specify a crystal having a reactance of 400 ? at 20 MHz. Instead,however, this is normally done by specifying a capacitance C L and equating.
where we have set ω = 2πf. Physically, at this frequency, the impedance of the series combination of the crystal and a capacitance C L has zero phase (equivalently, has zero reactance or is purely resistive). See Figure 1. To see this, consider
where the second step follows by Equation (1) and the fact that the reactance of a capacitance C is -1/( ωC).
Figure 1—This series combination has zero-phase impedance at a frequency where the crystal has load capacitance CL
So, the task of assuring proper oscillation frequency is the task of providing components (crystals in this case) that, at the specified frequency, have the required reactance, which is stated in terms of a capacitance CL by Equation (1).2 For example, instead of specifying crystals having a reactance of 400 ? at 20 MHz, we specify crystals having a load capacitance of 20 pF at 20 MHz, or more normally, we specify that the crystal frequency be 20 MHz at a load capacitance of 20 pF.
In “parallel resonant circuits,” CL is positive, typically being between 5 pF and 40 pF. In this case the crystal operates in that narrow frequency band between the crystal’s series and parallel resonant frequencies (F s and F p , respectively).
While a truly “series resonant circuit” does not have a load capacitance associated with it [or perhaps an infinite value by Equation (1)], most “series resonant circuits” actually operate slightly off of the series resonant frequency and therefore do have a finite load capacitance (that can be positive or negative).However, if this offset is small and specifying a load capacitance is not desired, it can either be ignored or handled by a slight offset in the specified frequency f.
As we shall see in Section 4, both the oscillator and the crystal determine C L . However, the crystal’s role is rather weak in that in the limit of zero resistance,the crystal plays no role at all in determining C L . In this limiting case, it makes sense to refer to C L as the oscillator load capacitance as it is determined entirely by the oscillator. However, when it comes time to order crystals, one specifies crystals having frequency f at a load capacitance C L , i.e. it is a condition on the crystal’s frequency. Because of this,it would be reasonable to refer to C L as the crystal load capacitance. For the sake of argument, we simply avoid the issue and use the term loadcapacitance.
注释:1> When ordering crystals for series resonant operation,instead of specifying a value for C L , be sure to state that the frequency f refers to the series-resonant frequency, F s .
2> This is not to say that all aspects of frequency determination are tied to this single number. For example,other aspects of the crystal and oscillator determine whether the correct mode of oscillation is selected and the system’s frequency stability (short and long term).
3. Defining F L at C L
We now take Equation (1) as our defining relation for what we mean by a crystal having a given frequency at a given load capacitance.
Definition: A crystal has frequency F L at a load capacitance C L when the reactance X of the crystal at frequency F L is given by Equation (1), where now ω = 2πF L .
Recall that, around a given mode, the reactance of a crystal increases from negative values, through zero at series resonance, to large positive values near parallel resonance where it rapidly decreases to large negative values, and then again it increases towards zero. (See Reference [1].) By excluding a region around parallel resonance, we have a single frequency for each value of reactance. In this way,we can associate a frequency F L given a value of C L .So, positive values of C L correspond to a frequency between series and parallel resonance. Large negative values of C L , correspond to a frequency below series resonance while smaller negative values correspond to frequencies above parallel resonance.(See Equation (3) below.)
3.1. The crystal frequency equation So, how much does the frequency of oscillation depend on the load capacitance C L ? We can answer this question by determining how the crystal frequency F L depends on the crystal load capacitance CL . One can show that to a very good approximation that
where C 1 and C 0 are the motional and static capacitances of the crystal, respectively. (See Reference [1] for a derivation and discussion of this relation.) For the purposes of this note, we shall refer to Equation (3) as the crystal frequency equation.
This shows the dependence of a crystal oscillator’s operational frequency on its load capacitance and its dependence on the crystal itself. In particular, the fractional frequency change when changing the load capacitance from C L1 to C L2 is given to good approximation by
3.2. Trim sensitivity
Equation (3) gives the dependence of operating frequency F L on the load capacitance C L . The negative fractional rate of change of the frequency with C L is known as the trim sensitivity, TS. Using Equation (3), this is approximately
From this we see that the crystal is more sensitive to given change in C L at lower values of C L .
4. But what determines C L ?
Consider the simple Pierce oscillator consisting of a crystal, an amplifier, and gate and drain capacitors as shown in Figure 2.
There are at least three stray capacitances that must be considered in trying to calculate the load capacitance of the Pierce oscillator circuit.
1. An added capacitance from the input of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C G , we can simply absorb this into our definition of C G . (That is C G is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
2. An added capacitance from the output of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C D , we can simply absorb this into our definition of C D . (That is C D is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
3. A stray capacitance C s shunting the crystal as shown in Figure 2.
Redefining C G and C D as discussed above, it then follows [2] that one of the conditions for oscillation is
Where
is the impedance of the parallel combination of the crystal and the capacitance C s and R o is the output resistance of the amplifier.
It can be shown that the crystal resistance R as a function of load capacitance C L is given approximately by (provided C L is not too small)
where R 1 is the motional resistance of the crystal [1].It then follows that (provided C L – C s is not too small)
And
With these results, Equation (6) gives the following equation for C L
where R ′ is approximated by Equation (9). Note that the equation for C L is actually a bit more complicated than it might seem at first as R ′ depends upon on C L.It can be seen that C L decreases as R 1 increases, and so by Equation (3), the frequency of operation increases with crystal resistance. So, the load capacitance does have a dependence on the crystal itself. But as we have mentioned previously, the variation in crystal resistance and resulting sensitivity to this variation is usually sufficiently low that the dependence can be ignored. (In this case, a nominal value for crystal resistance is used in calculating C L .)
However, sometimes the resistance effect cannot be ignored. Two crystals tuned so that both have exactly the same frequency at a given load capacitance C L can oscillate at different frequencies in the same oscillator if their resistances differ. This slight difference leads to an increase in the observed system frequency variation above that due to crystal frequency calibration errors and the board-to-board component variation.
Note that in the case of zero crystal resistance (or at least negligible compared to the output resistance Ro of the amplifier), Equation (11) gives
So, in this case, the load capacitance is the stray capacitance shunting the crystal plus the series capacitance of the two capacitances on each side of the crystal to ground.
5. Measuring CL
While in principal one could calculate C L from the circuit design, an easier method is simply to measure C L . This is also more reliable since it does not rely on the oscillator circuit model, takes into account the strays associated the layout (which can be difficult to estimate), and it takes into account the effect of crystal resistance. Here are two methods for measuring C L .
5.1 Method 1
This method requires an impedance analyzer, but does not require knowledge of the crystal parameters and is independent of the crystal model.
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency andresistance.
2. Place this crystal in the oscillator and measurethe frequency of operation F L . In placing the crystal into the circuit, be careful not to damage it or do anything to cause undue frequency shifts.(If soldered in place, allow it to cool down to room temperature.) A good technique that avoids soldering is simply to press the crystal onto the board’s solder pads using, for example,the eraser end of a pencil and observe the oscillation frequency. Just be careful that the crystal makes full contact with the board. The system can still oscillate at a somewhat higher frequency without the crystal making full contact with the board.
3. Using an impedance analyzer, measure the reactance X of the crystal at the frequency F L determined in Step 2.
4. Calculate C L using Equation (1) and the measured values for F L ( ω = 2πF L ) and X at F L .
5.2 Method 2
This method is dependent upon the four-parameter crystal model and requires knowledge of these parameters (through your own measurement or as provided by the crystal manufacturer).
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency and resistance.
2. Characterize this crystal. In particular measure its series frequency Fs , motional capacitance C1,and static capacitance C0.
3. Place this crystal in the oscillator and measure the frequency of operation F L (as in Method 1,Step 2.)
4. Calculate C L using Equation (3) and the measured values for F L , F s , C 1 , and C 0 .
It is recommended that either procedure be followed with at least 3 crystals. When done properly, this technique often gives values for C L that are consistent to about 0.1 pF. Further confidence in the final results can be found by repeating the procedure for a number of boards to estimate the board-to-board variation of C L .
Note that in the above, F L does not have to be precisely the desired oscillation frequency f. That is, the calculated value for C L is not a strong function of the oscillation frequency since normally only the crystal is strongly frequency dependent. If, for some reason, the oscillator does have strong frequency dependent elements, then using this procedure would be quite difficult.
6. Do I really need to specify a value for CL ?
There are at least three cases where a specification of C L is not necessary:
1. You intend to operate the crystals at their series-resonant frequency.
2. You can tolerate large errors in frequency (on theorder of 0.1% or more).
3. The load capacitance of your circuit is sufficiently near the standard value (see crystal data sheet) that the frequency difference is tolerable. This difference can be calculated with Equation (4).
If your application does not meet one of the three conditions above, you should strongly consider estimating the load capacitance of your oscillator and use this value in specifying your crystals.
- 阅读(229)
- [行业新闻]FOX crystal型号表2019年03月12日 09:34
FOX CRYSTAL晶振公司成立于1979年,美国福克斯晶振电子有限公司总部位于美国的佛罗里达州的迈尔斯堡。福克斯电子公司的成立使得该公司成为美国领先的高精度,高可靠性的频率元器件制造供应商。按当时的情况来看,FOX晶振公司还是处于一个小型的家族式石英晶体和振荡器的供应商。
美国FOX晶振公司在过去的32年中持续增长,其中一个重要因素离不开其研发部门。福克斯晶振的工程师开发出了几百种产品,而且这些产品为晶体和振荡器的性能,精度以及可靠性带来了认可的新标准。并可以不断的增长业务的需求,缩短了交付晶体的周期。
FOX CRYSTAL Crystal Company was founded in 1979, and Fox Crystal Electronics Co., Ltd. is headquartered in Fort Myers, Florida, USA. The establishment of Fox Electronics has made the company a leading supplier of high-precision, high-reliability frequency components in the United States. According to the situation at the time, FOX Crystal is still a supplier of small family quartz crystals and oscillators.
The US FOX Crystal Company has continued to grow over the past 32 years, and one of the important factors is inseparable from its R&D department. Engineers at Fox Crystal have developed hundreds of products that bring new standards of acceptance for the performance, accuracy and reliability of crystals and oscillators. And can continue to grow business needs, shortening the cycle of delivering crystals.
- 阅读(302)
- [公司新闻]HOSONIC CRYSTAL选型数据表2019年03月11日 09:05
关于HOSONIC鸿星晶振公司可能挺多人也知道,HOSONIC CRYSTAL鸿星晶振股份有限公司成立于1979年在台湾设立登记成立公司,登记的资本为新台币200万元。公司成立之后便于台湾投入石英晶体研发制造.1994年新增资本3400万元,开始大力研发生产石英晶体振荡器,石英晶振,贴片晶振,压控振荡器的研发生产。
About HOSONIC CRYSTAL Company may know that HOSONIC CRYSTAL was established in 1979 to establish a registered company in Taiwan with a registered capital of NT$2 million. After the establishment of the company, it is convenient for Taiwan to invest in the research and development of quartz crystal. In 1994, the company added 34 million yuan of capital, and began to vigorously research and develop the production and production of quartz crystal oscillator, quartz crystal oscillator, patch crystal oscillator and voltage controlled oscillator.
- 阅读(392)
- [行业新闻]NSK Ceramic Resonator2019年03月07日 10:27
台湾NSK晶振公司不仅生产石英晶振,石英晶体谐振器,晶体振荡器,温补晶振,压控晶体,还生产陶瓷谐振器(Ceramic Resonator),陶瓷滤波器(Ceramic Filter),ZTA陶瓷晶振,ZTT陶瓷晶振,3.58M,6M,4M,8M,16M,24M,27M频率均有现货供应.ZTA晶振可从低频1M到50MHZ,主要应用于电视遥控器,风扇遥控器,USB,鼠标等产品.
NRA ZTA/ MG, MT, MX DIP 1.8 MHz to 50.0 MHz 10.0*5.0*10.0
NRE ZTTCV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2
NRE ZTTCS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6
NRE ZTTCC MG SMD 2 to 6.99 MHz 7.4*3.4*1.8
NRD ZTACV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2
NRD ZTACS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6
NRD ZTACC MG SMD 2.0 to 6.99 MHz 7.4*3.4*1.8
NRT ZTT/ MG, MT, MX DIP 1.8 MHz to 50 MHz 10.0*5.0*10.0
NSK Ceramic Filter
陶瓷滤波器LT4.5MB,LT5.5MB,LT6.5MB可以免提提供样品测试,陶瓷滤波器主要应用于TV/VCR产品等.L10.7M陶瓷滤波器均可在线供应.
NRF LT4.5MB DIP 4.43MHz to 6.5MHz 5*3.2
NRF LTCA/CV SMD 10.7MHz 6.9*2.9*1.5
NRF JT4.5MD DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0
NRF JT4.5MC DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0
NRF JT10.7M SMD 10.7MHz 9.0*5.0*7.0
Taiwan NSK Crystal Co., Ltd. not only produces quartz crystal oscillator, quartz crystal resonator, crystal oscillator, temperature-compensated crystal oscillator, voltage-controlled crystal, but also ceramic resonator (Ceramic Resonator), ceramic filter (Ceramic Filter), ZTA ceramic crystal, ZTT ceramic. Crystal oscillator, 3.58M, 6M, 4M, 8M, 16M, 24M, 27M frequency are available from stock. ZTA crystal oscillator can be used from low frequency 1M to 50MHZ, mainly used in TV remote control, fan remote control, USB, mouse and other products.
- 阅读(203)
- [行业新闻]NSK OSCILLATOR数据表2019年03月06日 10:04
- 台湾NSK津绽晶振公司成立于1996年的9月份。成立之后的NSK晶振公司将全部精力投入到石英晶体振荡器,陶瓷滤波器,石英晶体,TCXO振荡器,差分晶振等产品的生产中。NADD 75晶振属于石英晶体振荡器中的一种,也是振荡器里的“贵族”。是差分晶体系列的一员。LVDS输出范围,频率也可以从77.76MHZ到622.08MHZ的高频中。大气化的尺寸7*5*1.9mm可放在任意高端产品中,NADD 75晶振在任何电路板中都显得格外的高端。
NAOD 75 CMOS 1.0 to 125.0 MHz 7*5*1.6

NAOH 53 CMOS 1.0 to 125.0 MHz 5*3.2*1.3

NAOK 32 CMOS 2.0 to 54.0 MHz 3.2*2.5*1.2

NAOL 22 CMOS 2.0 to 50 MHz 2*2.5*0.95

NADD 75
LVDS 77.76 MHz ~ 622.08 MHz 7*5*1.9

NAPD 75
LVPECL 75 MHz ~ 622.08 MHz 7*5*1.9

NAVD-6 CMOS 1.0 MHz to 52.0 MHz 7*5*1.8

NAVH-6 CMOS 12MHz ~ 35.328MHz 5*3.2*1.5
NAOD 75 CMOS 32.768 KHz 7*5*1.6

NAOH 53 CMOS 32.768 KHz 5*3.2*1.5

NAOK 32 CMOS 32.768 KHz 3.2*2.5*1.2

NAON 21
CMOS 2.0 to 50 MHz 2.05*1.65*0.75
- 阅读(201)
相关搜索
热点聚焦
- 1时钟振荡器XO57CTECNA12M电信设备专用晶振
- 2汽车音响控制器专用晶振403C35D28M63636
- 3XCO时钟振荡器C04310-32.000-EXT-T-TR支持微控制器应用
- 4ABS07W-32.768KHZ-J-2-T音叉晶体可实现最佳的电路内性能
- 5402F24011CAR非常适合支持各种商业和工业应用
- 6无线模块专用微型ECS-240-8-36-TR晶体
- 7DSX321G晶体谐振器1N226000AA0G汽车电子控制板专用晶振
- 8lora模块低功耗温补晶振ECS-327TXO-33-TR
- 9ECS-250-12-33QZ-ADS-TR适合高冲击和高振动环境的理想选择
- 10ECS-200-20-20BM-TR紧凑型SMD晶体是物联网应用的理想选择
泰河盛微信号
在线留言
收藏网站
网站地图
手机版
全球咨询热线:











快速通道