欢迎进入深圳市泰河盛电子有限公司! 泰河盛微信号泰河盛微信号 泰河盛微信号 在线留言在线留言 收藏网站收藏网站 网站地图网站地图 会员登录| 会员注册
泰河盛手机版手机版 手机二维码 全球咨询热线全球咨询热线: 0755-27872782
当前位置: 首页 » 技术支持
  • ECS:什么是相位噪声和抖动,它们是如何连接的?【2023-09-07】
    在全球范围内通信和移动数据的能力不断提高,使我们的星球似乎每天都在变小。随着对更快的蜂窝和互联网速度的需求不断增加,我们看到数据传输速率正以指数级的速度增长。随着这些数据速率的提高,它们必须突破当前时序裕量的限制。时序裕量是提供商用于其所有订户付费流量的干净、可用的带宽。可以想象,更干净的带宽等于更多的数据;更多的数据等于同一网络上更多的客户,这反过来又等同于更多的收益当尝试使用时序裕量的边缘时,会出现两种不同但相互关联的异常。这些异常将是相位噪声和抖动。它们的重要性将取决于您的数据传输方法。RF工程师通常会关注相位噪声,而数字设计人员则更关注抖动。
  • 泛音石英晶体的工作方式,Q 27.12-JXS21-9-10/15-T1-FU-WA-LF晶振【2023-06-25】

    泛音石英晶体的工作方式,Q 27.12-JXS21-9-10/15-T1-FU-WA-LF晶振,快速流畅的数据传输在当今世界至关重要。网络和服务器系统旨在以闪电般的速度处理和转发信息。自此,许多应用开始依赖于三位数兆赫 MHz)范围。

    如此高的频率不能用基波音中的AT晶体产生。虽然基频为40至50MHz的石英盘是可行的,但它们的生产涉及相当大的努力和相应的成本。出于这个原因,“泛音晶体”通常用于20兆赫兹以上的频率。


  • 康纳-温菲尔德最新的最准确和安静的OXCO-OX200-SC,OX200-SC-019.44M【2023-06-25】
    康纳-温菲尔德最新的最准确和安静的OXCO-OX200-SC,OX200-SC-019.44M,奥罗拉,伊利诺伊州-我们最新的OXCO恒温晶振,OX200-SC是我们最安静,准确和稳定10.0MHzOCXO。OX200-SC设计用于以下应用作为使用IEEE1588PTP主时钟的IP回程,需要非常高的频率稳定性,非常严格的初始校准和非常低的老化。这些规范可以消除或大大延长初始或定期重新校准的时间。
  • EPSON石英晶体X1A000061003200技术详情及在电子设备中的6G晶振应用【2023-06-21】
    石英晶体在电子设备中的应用:
    石英晶体有多种用途,有很多好处。
    石英晶体在手表、收音机和电视机生产中如此有用的主要好处之一是它们稳定而精确的频率控制。我们可以在计时、IT和通信产品中看到这一点:
    计时:石英音叉用于石英表、时钟和任何其他需要记录时间的设备,因为它们具有非常稳定和准确的频率,使它们成为计时的理想选择。
    信息技术和通信:石英还用于各种技术应用,主要用于电子设备、无线电和电视中的精密频率标准、光纤通信系统以及数字设备的定时控制。
    随着我们技术的进步,我们对电子产品的依赖和使用迅速增加,石英晶体变得越来越重要,现在有数十亿颗石英晶体用于各种电器。
    从电脑和智能手机到收音机和GPS设备,石英晶体现在是我们日常生活中依赖的许多最常用电器的核心组件。EPSON石英晶体X1A000061003200技术详情及在电子设备中的6G晶振应用
  • 泰艺晶振公司推出超低电流晶振,OYETDCJANF-12.000000晶振【2023-06-20】
    泰艺晶振公司推出超低电流晶振,OYETDCJANF-12.000000晶振具有功耗低、体积小、精度高的优点,广泛应用于可穿戴设备以及物联网领域
  • HC-49/KX-3H或HC-49/SMD为确定最佳石英尺寸提供实用的参考【2023-06-12】
    如果嵌入式计算机的空间有限,那么使用尺寸非常小的石英晶体是合乎逻辑的。然而,许多应用板仍然发布了非常大的晶体。因此,在这些微控制器的应用说明中,仍然部分规定了相当大的晶体的电气规格。这些通常是金属外壳中的石英,如HC-49/KX-3H或HC-49/SMD贴片晶体。如果使用小得多的石英,就不能再满足这样的要求了。然而,当一些用户面临重新设计其应用程序的决定时,这会让他们感到不安。本文试图详细阐述大、小振荡石英的区别,为如何确定最佳石英尺寸提供实用的参考。HC-49/KX-3H或HC-49/SMD为确定最佳石英尺寸提供实用的参考
  • 时钟晶体振荡器的使用与终端设计【2019-09-05】

    在当今的高性能系统中,需要一个出色的时钟源。随着专用集成电路(ASIC)的速度和性能达到更高的限制,分配该时钟源以驱动多个设备的需求变得更加困难。由于相关的快速边沿速率,系统中部署的较高频率导致长PCB迹线表现得像传输线。保持平衡系统需要适当的端接技术来实现应用中的跟踪路由。本应用笔记将重点介绍推荐的终止技术;关于输出负载的评论,并提供一些设计师要考虑的布局指南。

    传输线理论简介

    通常,大多数时钟源具有低阻抗输出。当这些器件用于驱动具有大阻抗的负载时,存在阻抗不匹配。根据应用条件,此阻抗不匹配会导致负载产生电压反射,从而产生时钟波形中的步进,振铃以及过冲和下冲。这可能通过降低负载处的时钟信号,错误的数据时钟和产生更高的系统噪声而导致系统性能不佳。

    为了减少电压反射,需要正确终止信号迹线。适当终止的设计考虑因素可以用两个语句来概括:

    1.使负载阻抗与线路阻抗相匹配

    2.使源阻抗与线路阻抗匹配

    对于大多数设计,第一种说法是首选方法,因为它消除了返回时钟源的反射。这样可以减少噪音,电磁干扰(EMI)和射频干扰(RFI)。

    下图显示了阻抗不匹配对时钟源的影响

     

    常用终止技术

    如上所述,为了减少电压反射,必须正确地终止迹线。 传输线的四种基本端接技术是串联,并联,戴维宁和AC

    系列终止

    串联终端消除了时钟源的反射,有助于保持信号质量。 这最适合驱动少量负载的TTL器件,因为时钟输出阻抗小于传输线特性阻抗。 图1显示了一系列终端。 电阻尽可能靠近时钟源放置。 R的典型设计值为10Ω75Ω

     

    R的值可以大于阻抗差,以便产生稍微过阻尼的状态并且仍然消除来自时钟源的反射。

    系列终端的主要优点是:

    1.简单,只需要一个电阻器

    2.功耗低

    3.在驱动高容性负载时提供电流限制;这还可以通过减少接地反弹来改善抖动性能

    系列终止的主要缺点是:

    1.增加负载信号的上升和下降时间;这在一些高速应用中可能是不可接受的

    2.无法驱动多个负载

    平行和戴维宁终结

    接下来的三种终端技术可提供更清晰的时钟信号,并消除负载端的反射。这些终端应尽可能靠近负载放置。

    2描绘了并行终端。并联终端消耗的功率最大,不建议用于低功率应用。它也可能改变占空比,因为下降沿将比上升沿更快。它比串联终端具有一个优点,即上升和下降时间的延迟大约是一半。

     

    如图3所示,戴维宁终端将比并联终端消耗更少的功率,并且通常用于PECL应用,50Ω线路匹配至关重要。 R的总值等于传输线的特征阻抗。 如果需要过阻尼状态,则R的总值可略小于特征阻抗。 戴维宁终端的主要缺点是每条线路需要两个电阻器,并且在终端附近需要两个电源电压。 建议不要将此端接用于TTLCMOS电路。

     

    AC终止

    AC端接,如图4所示,在并联支路中增加了一个串联电容。 由于RC时间常数,电容会增加时钟源的负载和延迟,但在稳态条件下将消耗很少或没有功率。 通常不建议使用此终端,因为它会通过增加传播延迟时间来降低时钟信号的性能。 为了保持有效终止,C L的值不应小于50pF。 较大的C L值将允许时钟边沿的快速转换,但随着电容器值的增加,较高的电流电平将通过,从而导致功耗的增加。 选择大于走线阻抗的R L值,以考虑负载输入阻抗的泄漏。

     

    输出负载简介

    应注意不要使时钟源过载。 如果使用单个时钟源来驱动多个负载,则如果总负载超过时钟源的驱动能力,则会发生波形劣化。

    过载的一些常见症状是波形削波,对称不平衡,信号幅度减小以及上升和下降时间值的变化。 通常随着时钟频率的增加,源驱动更高负载的能力将降低。 请务必参考时钟源规范以获得最大负载能力。

    下图显示了重载对时钟源的影响。

     

    通用时钟输出类型

    CTS时钟振荡器设计已经开发出来,具有各种封装选项,输入电压和输出类型。

    HCMOSHCMOS / TTL兼容

    今天的CTS设计提供“双兼容”振荡器,它们是能够驱动TTL应用的HCMOS输出类型。 由于转换时间较短,这些设备固有地具有更大的过冲和欠冲。 这可能不适合具有严格EMI要求的旧TTL设计。

    CTS生产两种流行的HCMOS / TTL兼容时钟振荡器CB3 / CB3LV和型号636

    下图显示了典型的HCMOS测试负载配置和波形参数。

     

    LVPECLLVDS

    HCMOS逻辑技术相比,CTS LVPECLLVDS逻辑输出设计具有许多优势。

    LVPECLLVDS技术从正电源获得其工作功率,从而实现与负载点处的HCMOS逻辑接口的必要兼容性。 这些逻辑输出还具有:

    1.降低系统抖动由于较小的特征过渡区域

    2.上升和下降时间更快

    3.提供差分输出减少排放至关重要

    4.能够直接驱动50Ω传输线

    5.降低高频时的电源消耗

    CTS Model 635提供两种输出类型的选项。

    下图显示了典型的LVPECLLVDS测试负载配置和波形参数

     

    布局指南

    在印刷电路板布局过程中采用良好的设计实践将最小化先前讨论的信号劣化。 PCB设计的一些常见指南是:

    1.将时钟源物理定位在尽可能靠近负载的位置

    2.限制时钟信号的走线长度

    3.不要将时钟信号靠近电路板边缘

    4.尽量避免在时钟信号路由中使用过孔。 过孔会改变走线阻抗,从而引起反射。

    5.不要在电源和接地层上布设信号走线

    6.避免在轨迹中出现直角弯曲,如果可能,请保持直线行程。 如果需要弯曲,请使用两个45°角或使用圆形弯曲(最佳).

     

    7. V CC与时钟源地之间的去耦电容对于降低可能传输到时钟信号的噪声至关重要。 这些电容必须尽可能靠近V CC引脚。

    8.为避免串扰,请在多个时钟源和高速开关总线之间保持适当的间隔。

    9.差分跟踪路由应尽可能接近,以获得高耦合系数。 路由的长度应相等,以避免阻抗不匹配,从而导致不同的传播延迟时间。

    10.使用单个时钟源驱动多个负载时,请考虑拆分路由。 使各个布线长度尽可能相等。

     

    结论

    本应用笔记介绍了使用驱动各种负载的时钟源的应用的正确终端技术。 它还概述了用于生成可靠应用程序设计的布局考虑因素 所有这些技术都力求最大限度地减少降低时钟信号的条件,从而导致系统性能不佳。

  • 高精度1612小尺寸晶体【2019-08-23】

    开发的1.6×1.2 mm GT-Cut石英晶体单元满足低功率,高精度,紧凑和薄型单元在低MHz频率下工作的电流需求。

    日本,2014131日:RIVER ELETEC(总部位于日本山梨县的Nirasaki)开发出一种超紧凑,低频率的MHz石英晶体单元。它以更小的封装(不超过1.6×1.2×0.33 mm)提供GT切割石英晶体的出色频率 温度特性,适用于频率范围为820 MHz的应用。开发利用了我们对10 MHz范围GT切割元件的持续研究以及精密光刻技术的使用年限。

    GT-cut石英晶体单元最初是在20世纪40年代开发的,具有出色的频率 温度特性,在空白制造方面面临挑战,限制了批量生产。另一方面,对于AT切割石英晶体单元,近年来已经转向支持更高频率以响应更小封装的趋势,从而需要在较低MHz频率下工作的较小的低功率单元。

    GT切割石英晶体单元的优点

    1.紧凑,薄型单元,工作频率较低

    GT切割石英晶体单元的宽度延伸模式(图1)允许封装设计不受毛坯尺寸的限制,从而可以在较低的MHz频率下工作,显着更小,更薄的单元,传统AT切割难以实现的特性石英晶体单元。 (参见表1.GT切割石英晶体单元的等效电路常数与AT切割单元的等效电路常数相当。

    1612xcc1

    1:石英晶体单元封装的比较

    1612xcc2

    1:结合主要(宽度 - 延伸)和次要(长度 - 延伸)振动的模式

    1612xcc3

    比较:GT-Cut石英晶体单元(左)和AT-Cut石英晶体单元(右)

    2.在宽温度范围内稳定的频率

    GT切割石英晶体单元具有非常优越的频率 - 温度特性(图2)。 该开发产生的单位在-20至+ 70°C范围内具有±3 ppm的显着值,在-40至+ 85°C范围内具有±5ppm的性能,而AT切割石英晶体单元则无法实现这一性能。

    1612xcc4

    3.可以低功率驱动

    由于智能手机,平板电脑和可穿戴电子产品采用电池供电,因此低功耗是电子元件的基本特征。鉴于使用AT切割石英晶体单元难以实现稳定的低功率振动,这些元件通常以10μW或更高的速度驱动。相比之下,GT切割石英晶体单元允许设计具有最佳轮廓,尺寸和厚度的振荡器,以最小化振动损失并确保稳定的振荡,即使在5μW或更低的驱动下也是如此。

    电池供电的移动设备通常设计为间歇运行,以帮助最大限度地降低功耗。这种装置需要能够快速恢复振荡的晶体。与传统的紧凑型AT切割石英晶体单元相比,GT切割单元的启动振荡时间约为550μs的两倍(与同一振荡电路中的12 MHz FCX-05晶振相同且频率相同)。

    GT切割石英晶体单元融合了其他领域的丰富技术专长。

    1.轮廓模式振动的设计专业知识

    RIVER ELETEC拥有开发利用轮廓模式振动的产品的历史,包括Lame模式共振器。我们为各种振动模式积累了大量的技术和设计专业知识,GT切割石英晶体单元充分利用了这些知识。这些单元在宽度延伸模式下使用轮廓模式振动。

    2.高精度光刻

    GT切割石英晶体采用数微米(μm)的精密制造生产,采用通过生产音叉石英晶体单元而精制的精密光刻技术。

    3.电子束密封,具有极高的可靠性

    GT切割晶体采用专有的电子束密封技术,通过金属盖密封在陶瓷封装上进行空气密封。这种保护性密封通过在封装内保持高真空条件来确保高芯性能,并确保其他RIVER CRYSTAL产品具有同样出色的可靠性。

    时间表

    1612xcc5

    样品出货计划于2014年2月开始。将这些产品作为频率振荡源提供给许多需要使用AT切割石英晶体单元难以实现的电子设备 - 即在更宽的温度范围内保持稳定的频率,超紧凑,低配置单元工作在较低的MHz频率和低功耗 - 我们继续在各种频率范围内扩展我们的产品线。 

  • 陶瓷谐振器的共振原理【2019-07-23】

    等效电路常数:图1.2显示了陶瓷谐振器的符号。端子间的阻抗和相位特性如图1.5所示。该图说明陶瓷谐振器在提供最小阻抗的频率fr(谐振频率)和提供最大阻抗的频率fa(反谐振频率)之间的频率范围内变为电感性的。它在其他频率范围内变为电容。这意味着双端子谐振器的机械振荡可以用等效电路代替,该等效电路由串联和并联谐振电路的组合构成,其中包括电感器L,电容器C和电阻器R.在谐振频率附近,等效电路可以表示如图1.4所示。

    frf a频率由压电陶瓷材料及其物理参数决定。等效电路常数可以从以下公式确定:

    fr

    考虑到frffa的有限频率范围,阻抗给出为Z = R e + jwL eLe= 0),如图1.5所示。 陶瓷谐振器应当作为具有损耗R e(Ω)的电感器L eH)操作。

    1.1显示了陶瓷谐振器和石英晶体谐振器之间等效电路常数的比较。 注意,电容和Q m存在很大差异,这导致实际操作时振荡条件的差异。 附录中的表格显示了每种陶瓷谐振器的等效电路常数的标准值。

    除了期望的振荡模式之外,存在用于其他振荡模式的高次谐波。 存在这些其他振荡模式是因为陶瓷谐振器使用机械共振。 1.6显示了这些特征。

    1.1

    1.2-7

    基本振荡电路

    通常,振荡电路可分为以下三种类型:

    1.积极的反馈

    2.负电阻元件

    3.在陶瓷谐振器,石英晶体谐振器和LC振荡器的情况下,传输时间或相位的延迟,正反馈是首选电路。

    在使用LC的正反馈振荡电路中,通常使用ColpittsHartley的调谐型反耦合振荡电路。 见图1.7

    在图1中。 在图7中,使用晶体管,它是最基本的放大器。

    振荡频率与Colpitts电路中由LC L1C L2组成的电路的谐振频率大致相同,或者由Hartley电路中的L 1L 2C组成。 这些频率可以用下面的公式表示。

    colpilts

    在陶瓷谐振器振荡器中,利用陶瓷谐振器代替电感器,利用谐振器在谐振和反谐振频率之间变为电感的事实。 最常用的电路是Colpitts电路。

    这些振荡电路的工作原理如图2.1所示。 满足以下条件时发生振荡。

    环路增益:G =α•β≥1

    相位量:φT=φ1+φ2= 360°•nn = 1,2...

    Colpitts电路中,使用φ1= 180°的反转,并且在反馈电路中用LC反转φ2= 180°。 用陶瓷谐振器的操作可以认为是相同的。

    2.3

    应用

    典型的振荡电路:陶瓷谐振器最常见的振荡器电路是Colpitts电路。电路的设计随应用和要使用的IC等而变化。尽管电路的基本配置与晶体控制振荡器的基本配置相同,但机械Q的差异是由电路常数的差异引起的。一些典型的例子如下。

    设计考虑因素:使用逆变器门将数字IC配置为振荡电路变得越来越普遍。下页的图3.1显示了带CMOS反相器的基本振荡电路的配置。

    INV.1用作振荡电路的反相放大器。 INV.2用作波形整形器,也用作输出的缓冲器。

    反馈电阻R f在逆变器周围提供负反馈,以便在通电时振荡开始。

    如果R f的值太大而输入逆变器的绝缘电阻很低,则由于环路增益的损失,振荡将停止。而且,如果R f太大,则可以将来自其他电路的噪声引入振荡电路。显然,如果R f太小,则环路增益会降低。 1MΩ的R f通常与陶瓷谐振器一起使用。

    阻尼电阻Rd具有以下功能,但有时省略。它使逆变器和反馈电路之间的耦合松动;从而减小逆变器输出侧的负载。此外,反馈电路的相位稳定。它还提供了一种降低高频增益的方法,从而防止了寄生振荡的可能性。

    负载电容:负载电容C L1C L2提供180°的相位滞后。应根据应用,使用的IC和频率正确选择这些值。如果C L1C L2的值低于必要值,则高频环路增益会增加,从而增加了寄生振荡的可能性。这特别有可能在厚度振动模式所在的4-5MHz附近。

    该电路中的振荡频率(f OSC)大致由下式表示。

    fosc

    其中,f r:陶瓷谐振器的谐振频率。

    C1:陶瓷谐振器的等效串联电容。

    C0:陶瓷谐振器的等效并联电容。

    C L = C L1C L2 / C L1 + C L2

    这清楚地表明振荡频率受负载电容的影响。当需要对振荡频率的严格公差时,应注意定义其值。

    CMOS反相器:CMOS反相器可用作反相放大器; 4069 CMOS组的单级型最有用。由于增益过大,环形振荡或CR振荡是使用三级缓冲型逆变器(如4049组)时的典型问题。 ECS采用RCA CD4O69UBE作为CMOS标准电路,如图3.2所示。

    HCMOS逆变器电路:最近,高速CMOSHCMOS)越来越多地用于允许微处理器的高速和低功耗的电路。

    HCMOS逆变器有两种类型:非缓冲74HCU系列和带缓冲器的74HC系列。 74HCU系统是陶瓷谐振器的最佳选择。见图3.3

    TTL逆变器电路:由于阻抗匹配,负载电容C L1C L2的值应大于CMOS的值。此外,反馈电阻R f应小至几KΩ。注意,需要偏置电阻R d来正确确定DC工作点。

    频率相关:振荡器电路如图所示

    以下页面是ECS标准测试电路。这些电路中使用的逆变器被广泛接受为工业标准,因为它们的特性代表了同一系列(CMOS / HCMOS / TTL)中微处理器中的特性。当然,应用将使用不同的IC,并且可以预期,振荡器电路特性将因IC而异。

    通常,这种变化可以忽略不计,并且可以简单地通过将处理器分类为CMOSHCMOSTTL来选择陶瓷谐振器部件号。

    鉴于标准ECS陶瓷谐振器在下页中对测试电路进行100%频率分类,因此将标准电路的振荡频率与客户指定电路的振荡频率相关联相对容易。

    例如,如果使用的微处理器是摩托罗拉6805,频率为4MHz,那么正确的ECS部件号将是ZTA4.OMG(频率分类到CD4O69UBE CMOS测试电路)。电路参数应选择如下:

    c1r1

    通过实际设置该电路以及下面图3.1所示的标准测试电路,可以确定使用带有6805处理器的ZTA4.OMG时可以预期的平均偏移。 实际数据如下所示:

    resonator

    根据这些数据,可以预测标准ZTA4.00MG谐振器的频率偏离原始的4.00MHz±0.5%初始容差约+ 0.06%。 这当然是一个可以忽略不计的转变,不会以任何方式影响电路性能。

    3.1

    3.2

    3.3

    5.1 各种IC / LSI电路:

    通过充分利用前面提到的特征,陶瓷谐振器与各种IC组合在一起被广泛应用。以下是一些实际应用示例。

    微处理器的应用:陶瓷谐振器是各种微处理器的最佳稳定振荡元件:4位,8位和16位。由于微处理器参考时钟所需的一般频率容差为±2% -  3%,因此标准单元满足此要求。向您的ECSLSI制造商询问电路常数,因为它们随频率和使用的LSI电路而变化。图A显示了具有4位微处理器的应用程序,图B显示了具有8位微处理器的应用程序。

    遥控器IC:遥控器越来越成为一种常见功能。振荡频率通常为400-500 KHz455KHz是最受欢迎的。该455KHz被载波信号发生器分频,从而产生大约38KHz的载波。

    VCO(压控振荡器)电路:VCO电路用于电视和音频设备,因为信号需要与广播电台发送的导频信号同步处理。最初使用振荡电路,例如LCRC;然而,现在使用陶瓷谐振器,因为它们不需要调整并且具有优于旧型电路的稳定性。用于VCO应用的谐振器需要具有宽的可变频率

    其他:除上述用途外,陶瓷谐振器广泛用于IC用于语音合成和时钟生成。对于一般的定时控制应用,振荡频率通常由用户根据IC制造商推荐的工作频率范围选择。用给定的IC选择这个频率将决定什么电路值和哪个陶瓷谐振器是合适的。选择陶瓷谐振器部件号时,请联系您当地的ECS销售代表。

    如前所述,陶瓷谐振器有许多应用。一些更具特定应用的振荡器电路要求为该应用和IC开发独特的陶瓷谐振器。

    ABC

    振荡上升时间

    振荡上升时间是指在激活IC的电源时振荡从瞬态区域发展到稳定区域的时间。使用陶瓷谐振器时,它定义为在稳定条件下达到振荡电平的90%的时间如图6.1所示。

    上升时间主要是振荡电路设计的函数。通常,较小的负载电容,较高频率的陶瓷谐振器和较小尺寸的陶瓷谐振器将导致较快的上升时间。随着谐振器的电容减小,负载电容的影响变得更明显。图6.2显示了对负载电容(C L)和电源电压的上升时间的实际测量。值得注意的是,陶瓷谐振器的上升时间比石英晶体快一到二十倍。 (这一点在图6.3中用图解说明)

    启动电压:启动电压是指振荡电路可以工作的最小电源电压。所有电路元件都会影响启动电压。它主要取决于IC的特性。图6.4示出了相对于负载电容的起始电压特性的实际测量的示例。

    6.1-3

    陶瓷共振器振荡特性

    下面描述基本电路中振荡的一般特性。有关特定类型的ICLSI的振荡特性,请与泰河电子联系。

    -20°C+ 80°C的范围内,温度变化的稳定性为±0.30.5%,尽管根据陶瓷材料的不同而略有不同。负载电容(C L1C L2)对振荡频率的影响相对较高,可以根据f OSC的公式计算.ffC。由于电容,变化约±0.1

    工作电压范围内的偏差为±0.1%。 f OSC。也随IC的特性而变化。

    电源电压变化特性:有关给定振荡频率的实际稳定性测量示例,请参见下面的图1

    振荡水平:以下是振荡水平对温度,电源电压和负载电容(C L1C L2)的实际测量示例。振荡水平要求在很宽的温度范围内保持稳定,并且温度特性应尽可能平坦。除非IC具有内部恒定电压电源,否则这种变化与电源电压呈线性关系。

    figure 1

    figure 2


记录总数:49 | 页数:5     1 2 3 4 5    

Recommended News

KVG石英晶体XMP-5135-1A-18pF-24.000MHz满足客户的独特要求而设计

KVG石英晶体XMP-5135-1A-18pF-24.000MHz满足客户的独特要求而设计

KVG石英晶体XMP-5135-1A-18pF-24.000MHz满足客户的独特要求而设计

KVG石英晶体XMP-5135-1A-18pF-24.000MHz满足客户的独特要求而设计

KVG Quartz Crystal Technology位于德国内卡比绍夫海姆(Neckarbishofsheim)市中心,坐落在一座庄严的石头建筑中,致力于实现其对电子核心技术的长期承诺。任何带有振荡器或时钟的系统都需要精确的频率基准,理想情况下,该基准不会引入相位噪声或抖动,并且对温度和振动稳定。石英晶体长期以来一直是此类源的主要频率参考,KVG是最早开发和商业化该技术的公司之一。

KVG由物理学家Kurt Klingsporn于1946年成立,kristlerverarbeitungsgesellschaft Neckarbischofsheim(内卡比绍夫斯海姆的晶体加工公司),已将其能力从晶体扩展到设计和制造使用晶体技术的振荡器,如温度补偿晶体振荡器(TCXO)、烤箱控制晶体振荡器(OCXO)以及压控晶体振荡器(VCXO)。KVG还开发了晶体滤波器,通常是切比雪夫或巴特沃斯设计的,中心频率在5到200MHz之间,带宽在1.5到75kHz之间。


【更多详情】
联系泰河电子
咨询热线 咨询热线:0755-27872782

手机:13824306246

QQ:794113422QQ

邮箱:taiheth@163.com

地址:广东深圳市宝安区40区33号工业城6楼